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ABSTRACT
Successful halo-model descriptions of the luminosity dependence of clustering distinguish
between the central galaxy in a halo and all the others (satellites). To include colours, we
provide a prescription for how the colour–magnitude relation of centrals and satellites depends
on halo mass. This follows from two assumptions: (i) the bimodality of the colour distribution
at a fixed luminosity is independent of halo mass and (ii) the fraction of satellite galaxies which
populate the red sequence increases with luminosity. We show that these two assumptions allow
one to build a model of how galaxy clustering depends on colour without any additional free
parameters than those required to model the luminosity dependence of galaxy clustering. We
then show that the resulting model is in good agreement with the distribution and clustering of
colours in the Sloan Digital Sky Survey, both by comparing the predicted correlation functions
of red and blue galaxies with measurements and by comparing the predicted colour–mark
correlation function with the measured one. Mark correlation functions are powerful tools for
identifying and quantifying correlations between galaxy properties and their environments:
our results indicate that the correlation between halo mass and environment is the primary
driver for correlations between galaxy colours and the environment; additional correlations
associated with halo ‘assembly bias’ are relatively small. Our approach shows explicitly how
to construct mock catalogues which include both luminosities and colours – thus providing
realistic training sets for, e.g., galaxy cluster-finding algorithms. Our prescription is the first
step towards incorporating the entire spectral energy distribution into the halo model approach.

Key words: methods: analytical – methods: statistical – galaxies: clusters: general – galaxies:
formation – galaxies: haloes – large-scale structure of the universe.

1 IN T RO D U C T I O N

The halo model is a useful language for discussing how galaxy
clustering depends on galaxy type: galaxy bias (see Cooray &
Sheth 2002 for a review). To date, the halo model has been used
to provide a useful framework for modelling the luminosity de-
pendence of galaxy clustering. The main goal of this paper is to
extend the halo-model description of galaxy luminosities to include
colours. This is an important step towards the ultimate goal of
providing a description of how the properties of a galaxy, its mor-
phology and spectral energy distribution are correlated with those
of its neighbours. The hope is that, by relating such correlations be-
tween galaxies to the properties of their parent dark matter haloes,
the halo model will prove a useful guide in the study of galaxy
formation.

�E-mail: skibba@mpia.de (RAS); shethrk@physics.upenn.edu (RKS)

The halo-model description of the luminosity dependence of clus-
tering is usually done in three rather different ways, which have
come to be known as the ‘halo occupation distribution’ (HOD; Jing,
Mo & Börner 1998; Benson et al. 2000; Seljak 2000; Scoccimarro
et al. 2001; Berlind & Weinberg 2002; Zehavi et al. 2005), the ‘con-
ditional luminosity function’ (CLF; Peacock & Smith 2000; Yang,
Mo & van den Bosch 2003; Cooray 2006; van den Bosch et al. 2007)
and the ‘subhalo abundance matching’ (SHAM; Klypin et al. 1999;
Kravtsov et al. 2004; Conroy, Wechsler & Kravtsov 2006; Vale &
Ostriker 2006) methods. The HOD approach uses the abundance
and spatial distribution of a given galaxy population (typically, just
the two-point clustering statistics) to determine how the number
of galaxies depends on the mass of the parent halo. This is done
by studying a sequence of volume-limited galaxy catalogues, each
containing galaxies more luminous than some threshold luminosity.
The CLF method attempts, instead, to match the observed luminos-
ity function by specifying how the luminosity distribution in haloes
changes as a function of halo mass. One can infer the CLF from
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the HOD approach, and vice versa, so the question arises as to
which is the more efficient description. For a given catalogue, the
HOD method requires the fitting of just two free parameters, so it
is relatively straightforward. The CLF method requires many more
parameters to be fit simultaneously, but uses fewer volume-limited
catalogues. SHAMs first identify the subhaloes within virialized
haloes in simulations, and then use subhalo properties to match the
subhalo abundances to the observed distribution of luminosities.
Once this has been done, CLFs or HODs can be measured in the
simulations.

In SPH and semi-analytic galaxy formation models, central and
satellite galaxies are rather different populations (e.g. Kauffmann
et al. 1999; Sheth & Diaferio 2001; Guzik & Seljak 2002; Benson
et al. 2003; Sheth 2005; Zheng et al. 2005). In the HOD and CLF
approaches to the halo model, the central galaxy in a halo is assumed
to be very different from all the others. For example, the CLF
approach must provide a description of how the central and satellite
luminosity functions vary as a function of halo mass. The HOD-
based analyses predict that the satellite galaxy luminosity function
should be approximately independent of halo mass, and hence of
group and/or cluster properties (Skibba et al. 2006). Skibba, Sheth &
Martino (2007) present evidence from the Sloan Digital Sky Survey
(SDSS) in support of this prediction. More recent analysis of a rather
different group catalogue has confirmed this finding (Hansen et al.
2007). Skibba et al. argued that this independence can reduce the
required number of free parameters in CLF-based analyses.

One of the goals of the present work is to show that the HOD-
based approach also provides a rather simple way to understand
how galaxy clustering depends on colour. In essence, it provides a
simple algorithm for specifying how the joint CLF (i.e. the lumi-
nosity distribution in two different bands) varies with halo mass. In
principle, this can be done by splitting the sample up into small bins
of luminosity and colour, and studying how the clustering signal in
each bin changes. Zehavi et al. (2005) describe a first attempt at this
– for each bin in luminosity, they use two bins in colour: ‘red’ or
‘blue’. [Croton et al. (2007a) also study the difference in clustering
strengths of red and blue galaxies. They use related statistics, but
do not attempt a halo-model description of their measurements.] As
sample sizes increase, it will become possible to split the sample
into many more colour bins. However, even for this simplest case,
Zehavi et al. were led to a rather more complex parametrization
of the HOD than was necessary for the luminosities – they cau-
tion that, as a result, there are more degeneracies amongst their
parameter choices, and so the constraints on the HODs they obtain
are considerably weaker than for luminosities alone. While such a
brute force approach to determining the HOD is certainly possi-
ble, we argue below that there may be some merit to recasting the
problem as one in which the physics and statistics are more closely
related.

In essence, our approach exploits the fact that, to a good ap-
proximation, galaxies appear to be bimodal in their properties (e.g.
Blanton et al. 2005a). In the present context, we are interested in
the fact that the distribution of colours at fixed luminosity is bi-
modal (e.g. Baldry et al. 2004; Willmer et al. 2006). Our approach
is to couple this bimodality with the centre-satellite split in the halo
model.

This paper is organized as follows. Section 2 describes our
approach: it shows the correlation between colour and luminosity in
the SDSS sample, and then describes a model for the luminosities
and colours of centrals and satellites which is designed to reproduce
this bimodality. Section 3 describes how to use our model to gener-
ate mock catalogues which have the correct luminosity dependence

of clustering and the observed colour–magnitude relation, as well
as how to incorporate our approach into a halo-model description
of the colour–mark two-point correlation function. Section 4 pro-
vides a comparison of our model predictions with measurements
from the SDSS. These include the clustering signal from ‘red’ and
‘blue’ galaxies (defined as being redder or bluer than a critical
luminosity-dependent colour) and the clustering signal when galax-
ies are weighted by colour – the colour–mark correlation function.
A final section summarizes our findings.

Throughout, the rest-frame magnitudes we quote are associated
with SDSS filters shifted to z = 0.1; the absolute magnitude of
the Sun in this r-band filter is 4.76 (Blanton et al. 2003). Where
necessary, we assume a flat background cosmological model in
which �0 = 0.3, the cosmological constant is �0 = 1 − �0 and
σ 8 = 0.9. We write the Hubble constant as H0 = 100 h km s−1

Mpc−1. In addition, we always use ‘log’ for the 10-based logarithm
and ‘ln’ for the natural logarithm.

2 C O L O U R – M AG N I T U D E B I M O DA L I T Y A N D
THE C ENTRE-SATELLITE SPLIT

2.1 Bimodality in the SDSS

Baldry et al. (2004) report that the distribution of rest-frame u − r
colour at a fixed r magnitude can be well modelled as the sum of
two Gaussian components. The same is true of the distribution of
rest-frame g − r colour (e.g. Blanton et al. 2005a); we call these
the red and blue components of the distribution p(c|L). The mean
and rms values of these components depend on luminosity. This
dependence is quite well described by simple power laws:

〈g − r|Mr〉red = 0.932 − 0.032 (Mr + 20),

rms(g − r|Mr )red = 0.07 + 0.01 (Mr + 20); (1)

〈g − r|Mr〉blue = 0.62 − 0.11 (Mr + 20),

rms(g − r|Mr )blue = 0.12 + 0.02 (Mr + 20). (2)

The fraction of objects in the blue component decreases with
increasing luminosity:

fblue(Mr ) ≈ 0.46 + 0.07 (Mr + 20), (3)

and drops toward zero at the bright end.
Fig. 1 shows this bimodality and the two Gaussian component fits

which are based on these expressions. Our model of the bimodality,
which motivates an algorithm for constructing mock catalogues,
and which our halo model calculation requires, uses the red and
blue sequences given by equations (1) and (2). These sequences
are also shown in a colour–magnitude diagram (Fig. 2) along with
the colour–magnitude contours of one of the volume-limited SDSS
catalogues used in Section 4.

However, it is common to make a cruder approximation to this
bimodality, by simply labelling galaxies as ‘red’ if they are redder
than

0.1(g − r)cut = 0.8 − 0.03 (0.1Mr + 20), (4)

and calling them ‘blue’ otherwise (e.g. Zehavi et al. 2005; Blanton
& Berlind 2007). [The recent analysis of satellite galaxy colours by
van den Bosch et al. (2008) used a stellar mass-based split, which
translates into a similar colour cut as the one above, although their
cut is slightly steeper with respect to r-band luminosity.] In what
follows, we will only use this sharp threshold when comparing our
results to previous work.
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Figure 1. Bimodal distribution of g − r colour in the SDSS. Smooth curves
show that, at a fixed luminosity, the distribution is well modelled by the sum
of two Gaussian components.

Figure 2. Colour–magnitude diagram in the Mr < −19.5 volume-limited
SDSS catalogue. Solid lines show the mean values of the red and blue
sequences (equations 1 and 2); dashed line shows the satellite sequence
(equation 7) and dotted line shows equation (4) which some authors use to
divide the population into red and blue.

The SDSS colours (and magnitudes) have measurement errors
which contribute to the rms of the red and blue sequences, espe-
cially at faint magnitudes. However, the uncertainties in the g − r
galaxy colours in the SDSS are typically less than 0.02 mag, so they
are unlikely to significantly affect the constraints on the model.
Since the measurement errors almost certainly do not correlate with
environment, they are not expected to bias the measured colour–
mark correlation functions shown in Section 4; they will, however,
increase the error bars on the clustering signal. We note, however,
that there is an important systematic problem with the colours for
which we do not correct: namely a dusty spiral will appear redder if
viewed edge-on rather than face-on. In fact, a significant fraction of
the objects called ‘red’ are not the early types which one typically

associates with the ‘red sequence’ (Bernardi et al. 2003). Mitchell
et al. (2005) estimate that this fraction is of the order of 40 per cent
(also see Maller et al. 2008). Since this systematically also affects
the luminosities, for which no halo-model analysis to date has yet
made a correction, we have not done so here either.

2.2 Luminosities and colours of centrals and satellites

To illustrate our approach, we will begin with an extreme assump-
tion. Suppose that (i) the bimodal colour distribution is independent
of halo mass (by which we mean that the distribution of colour at
a fixed luminosity is independent of halo mass; the distribution of
luminosities, of course, does depend on halo mass), and (ii) satel-
lites are drawn from the red part of the bimodal colour distribution
– no satellites come from the blue sequence. Later in this paper, we
will find it necessary to relax the second assumption, but the data
do not yet require us to give up the first. We think assumption (ii) is
a useful extreme which helps bring into focus the key points of the
approach.

Given the constraints from the colour distribution as a function of
luminosity (Section 2.1) and from luminosity-dependent clustering
(Appendix A), these two assumptions allow one to model the halo
mass dependence of the colours of both centrals and satellites, and
in general to build a model of how galaxy clustering depends on
colour, without any additional free parameters. For example, these
assumptions imply that the mean satellite colour is

〈c|m〉 ≡
∫

dcp(c|m) c =
∫

dL p(L|m)
∫

dcp(c|L, m) c

=
∫

dL p(L|m)〈c|L,m〉. (5)

Whereas the first equality is the definition, the final expression
shows how one might estimate the left-hand side from the knowl-
edge of the luminosity distribution in haloes of mass m and the
mean colour at a given luminosity in such haloes.

If the distribution of satellite colours at a fixed satellite luminosity
is independent of halo mass [this is not unreasonable, given that the
distribution of luminosities itself is approximately independent of
halo mass (see Skibba et al. 2006, 2007; Hansen et al. 2007)], then
this becomes

〈c|m〉sat =
∫

dLpsat(L|m) 〈c|L〉sat. (6)

Thus, given m, we integrate over the distribution of satellite lumi-
nosities, weighting by 〈c|L〉sat.

Our simplest model (assumption ii) uses equation (1), the colour–
magnitude relation along the red sequence, for 〈c|L〉sat. We will show
later that setting

〈g − r|Mr〉sat = 0.83 − 0.08 (Mr + 20) (7)

instead, which is bluer at faint luminosities (see Fig. 2), provides
a substantially better agreement with the observations. This is best
thought of as a model in which satellites are drawn from the red
sequence with probability

p(red sat|L) = 〈c|L〉sat − 〈c|L〉blue

〈c|L〉red − 〈c|L〉blue
, (8)

and from the blue sequence with probability

p(blue sat|L) = 1 − p(red sat|L). (9)

These expressions imply that, for SDSS g − r colours, p(blue sat
|L) ≈ 0.4 at Mr = −18, and it drops to zero at Mr ≈ −22. Since
the fraction of galaxies that are satellites has a similar dependence
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on luminosity (we provide explicit HOD-derived expressions for
this later), this model says that although almost 60 per cent of the
galaxies with Mr = −18 are from the blue sequence (cf. equation 3),
slightly less than 20 per cent of the galaxies with Mr = − 18 are blue
satellites: only a third of the faint blue galaxies are satellites, the
others are centrals. Allowing for blue-sequence satellites modifies
the discussion below trivially.

It is worth reiterating that, in this model, satellite colours only
depend on halo mass because satellite luminosities do. Since
psat(L|m) depends only weakly on m (Skibba et al. 2007), we expect
〈c|m〉sat to also depend only weakly on m.

In practice, we do not evaluate the integral in equation (6) as
written. Rather, we use a variation of the trick we used in Skibba
et al. (2006). Namely, for some function C(L) of L,∫ ∞

Lmin

dL C(L)
∫ ∞

L

dL′ p(L′|m) =
∫ ∞

Lmin

dL′ p(L′|m)
∫ L′

Lmin

dL C(L).

(10)

Skibba et al. studied the case where C(L) = 1, so the inner integral
gave L′ − Lmin. Here, we wish to set C(L) to be that function of L
which, when integrated over L, yields 〈c|L′〉red − 〈c|Lmin〉red. Thus,

〈c|m〉sat = 〈c|Lmin〉red +
∫ ∞

Lmin

dLC(L) Psat(> L|m), (11)

where we have defined

Psat(> L|m) ≡
∫ ∞

L

dL psat(L|m) = Nsat(> L|m)

Nsat(> Lmin|m)
. (12)

If colour and luminosity are in magnitudes (i.e. we work in loga-
rithmic rather than linear variables) then the integral is simpler:

〈g − r|m〉sat = 〈g − r|Mmin〉sat

+Csat, slope

∫ −∞

Mr,min

dMr Psat(< Mr |m), (13)

where Psat(< Mr |m) = Psat(>L|m), and Csat, slope is the slope of
the relation showing how the mean satellite colour changes with
magnitude. That is, Csat, slope = −0.032 or −0.08 if satellites are
drawn from the red sequence (cf. equation 1) or from equation (7).

Obtaining an expression for the typical colour associated with
the central galaxies of m haloes is more complicated. Although the
bimodal distribution of colour at a fixed luminosity can be thought
of as arising from a mix of objects which lie along a blue or a red
sequence, in what follows, it will be more useful to think in terms
of the central-satellite split. In this case,

〈c|L〉 = Ncen(L)〈c|L〉cen + Nsat(L)〈c|L〉sat

Ncen(L) + Nsat(L)
, (14)

making

〈c|L〉cen = 〈c|L〉 + Nsat(L)

Ncen(L)
[〈c|L〉 − 〈c|L〉sat]. (15)

If, as we assumed for the satellites, the distribution of central galaxy
colours at a fixed luminosity is independent of halo mass (the results
of Berlind et al. 2005 support this assumption), then the mean
colour as a function of halo mass is simply 〈c|m〉cen =〈c|L(m)〉cen

if there is no scatter between central galaxy luminosity and halo
mass (e.g. Zehavi et al. 2005). If there is scatter (e.g. Zheng, Coil
& Zehavi 2007), then

〈c|m〉cen =
∫

dLPcen(L|m) 〈c|L〉cen. (16)

Now, by hypothesis, 〈c|L〉sat is given by equation (1) (or equa-
tion 7), whereas 〈c|L〉 is simply the mean colour of all galaxies as

a function of luminosity. Thus, both these quantities are observ-
ables, or are constrained by observables, for the satellites (Skibba
2008); the only unknown is Nsat(L)/Ncen(L). Since both numbers
are counted in the same volume, this is the same as the ratio of
the number densities: Nsat(L)/Ncen(L). We discuss how this ratio is
determined by the luminosity-based HOD in Appendix A.

It is worth noting that the quantity in square brackets in equa-
tion (15) is negative. This means that, in general, the colours of
central galaxies are bluer than the average for their luminosities.
Although this seems counter to intuition – one is used to thinking
of central galaxies as being red – it is, in fact, sensible. Essentially,
the paradox is resolved when one realizes that the satellites actually
inhabit more massive haloes than do centrals of the same luminos-
ity. It may help to note that this effect is most pronounced at low L,
where the mean colour is significantly bluer than the red sequence,
and the number of satellites can be large. Low-luminosity galaxies
that are centrals are hosted by low-mass haloes, whereas satellite
galaxies of similar luminosity are more likely to reside in groups or
clusters, so their parent haloes are more massive. Thus, our model
has placed blue central galaxies in low-mass haloes and red satellite
galaxies in massive haloes. At higher luminosities, 〈c|L〉 approaches
that of the red sequence. In this limit, the term in square brackets
becomes small, as does the number of satellites, so the colours of
central galaxies tend to 〈c|L〉; that is, our model places luminous
central galaxies on the red sequence.

3 TWO WAY S TO T E S T TH E M O D E L O F
BI MODALI TY

We now describe two ways to test our model of the bimodality.
The first is numerical – we provide an algorithm for constructing
mock catalogues which are consistent with our model. The model
can be tested by performing the same analysis on the mocks that
was performed on real data. This is particularly useful for the anal-
yses which are somewhat involved or contrived, so that an analytic
description is difficult. The second is analytic – we show how our
model can be implemented to provide a halo-model description of
mark correlations when the mark is colour. Skibba (2008) describes
the result of a third test: a direct measurement of central and satellite
colours in group catalogues.

3.1 An algorithm for constructing mock catalogues with
luminosities and colours

The analysis above shows that one can generate a mock galaxy
catalogue in two steps: first generate luminosities, and then use
them to generate colours. Note that the method used for generating
luminosities is not important: the luminosities could have come from
a HOD analysis, a CLF analysis, or may be based on a SHAM.

Our algorithm for generating luminosities comes from Skibba
et al. (2006). Briefly, we specify a minimum luminosity Lmin which
is smaller than the minimum luminosity we wish to study. We
then select the subset of haloes in the simulation which have m >

mmin(Lmin). Each halo is assigned a central galaxy with luminosity
given by inverting the relation between halo mass and luminosity
(equation A2). We specify the number of satellites the halo con-
tains by choosing an integer from a Poisson distribution with mean
Nsat(>Lmin|m). The luminosity of each satellite galaxy is specified
by generating a random number u0 distributed uniformly between
0 and 1, and finding that L for which Nsat(>L|m)/Nsat(>Lmin|m) =
u0. This ensures that the satellites have the correct luminosity dis-
tribution.
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We could assign colours to each of the satellites by drawing a
Gaussian random number with mean and rms given by inserting the
satellite luminosity in equation (1) for the red sequence. However,
as we show in Section 4, this results in a correlation between colour
and environment that is too strong compared to the data. Instead,
we want the satellites to have colours which are bluer than the
red sequence at faint luminosities, as specified by equation (7). To
implement this in our mock catalogue, we draw a uniformly dis-
tributed random number 0 ≤ u1 < 1. The satellite is drawn from the
red sequence (a Gaussian with mean and rms given by equation 1)
if u1 ≤ p(red sat |L), where p(red sat |L) is given by equation (8)
and from the blue sequence (Gaussian with mean and rms from
equation 2) otherwise. Note that only the luminosity matters for
determining the colour; the halo mass plays no additional role.

The colours for central galaxies can also be drawn from either
the red or blue sequence. To determine which, we draw another uni-
formly distributed random number u2. If u2 > f blue(L)/f cen(L), where
L is the central object’s luminosity, then the object is assigned to the
red sequence, so we draw a Gaussian with luminosity-dependent
mean and rms given by equation (1). Else, it is blue, and we use
equation (2) instead. Equations (3) and (A8) show that this assigns
all central galaxies fainter than Mr ≈ −18.5 to the blue sequence.

Finally, we place the central galaxy at the centre of its halo,
and distribute the satellites around it so that they follow a Navarro,
Frenk & White (1997) profile (see Scoccimarro & Sheth 2002 for
how this can be done efficiently). The resulting mock galaxy cat-
alogue has been constructed to have the correct luminosity func-
tion as well as the correct luminosity dependence of the galaxy
two-point correlation function. In addition, colours in this cata-
logue are assigned in accordance with the model described previ-
ously: satellite and central galaxy colours are assigned such that
the galaxy population as a whole has the correct colour–luminosity
distribution.

Our model makes a prediction for how the bimodality in colour
differs for central and satellite galaxies. In Fig. 3, we show the
colour distribution as a function of halo mass of central and satellite

Figure 3. Bimodal distribution of g − r colour for central galaxies (red
histogram), satellite galaxies (blue dashed histogram) and all galaxies
(centrals+satellites; black-dotted histogram) in a mock catalogue with
Mr < −20.5. The distributions are shown for four intervals in log halo
mass, indicated in square brackets in each panel.

galaxies in a mock catalogue with Mr < −20.5. We normalize the
central and satellite galaxy distributions by the total number of
galaxies in each bin; consequently, the lower mass haloes are dom-
inated by central galaxies, while satellites contribute most of the
galaxies in massive haloes. First, note that the satellite distribution
is almost the same in each panel: this is a consequence of our as-
sumption that the distribution of satellite colours at fixed luminosity
is independent of halo mass (i.e. psat(c|L, m) = psat(c|L)), and the fact
that satellite luminosities are approximately independent of mass
as well. On the other hand, the centrals have a more bimodal dis-
tribution in low-mass haloes, while in massive haloes most of them
are on the red sequence. Secondly, it is interesting that the blue
and red modes of the central galaxy bimodal colour distribution are
closer together than those of the satellite colour distribution, such
that the blue bump of the centrals tends to peak at the minimum in
the satellite distribution.

3.2 Implicit assumptions, bells and whistles

This halo-model-based prescription for making mock catalogues
uses three simplifying assumptions which are worth discussing
explicitly. First, although we assume haloes are spherical and
smooth, the density run of satellites around halo centres is almost
certainly neither. Generating triaxial distributions is straightforward
once prescriptions for how the triaxiality depends on halo mass and
how it correlates with environment are available. Once these are
known, they can be incorporated into the analytic halo-model de-
scription (Smith, Watts & Sheth 2006). Similarly, parametrizations
of halo substructure can also be incorporated into the description
(Sheth & Jain 2003). Of course, both these types of correlations can
be included in the mock catalogue directly from a simulation if one
simply selects the appropriate number of particles from the halo
itself, rather than generating the profile shape synthetically. This is
costly because now one needs the full particle distribution, rather
than just the halo catalogue, to generate the mock – but note that it
is not a problem of principle.

Secondly, note that the number of galaxies in a halo, the spa-
tial distribution of galaxies within a halo and the assignment of
luminosities all depend only on halo mass. None of these depends
on the surrounding large-scale structure. Therefore, the mock cat-
alogue includes only those environmental effects which arise from
the environmental dependence of halo abundances. This point was
made by Skibba et al. (2006); it is also true of our prescription for
including colours.

Thirdly, haloes of the same mass will have had a variety of forma-
tion histories. Some will have assembled their mass and their galaxy
populations more recently than others. Recent assembly means less
time for dynamical friction, and, possibly, a younger stellar popula-
tion. So, at a fixed halo mass, one might expect to find a correlation
between the age of a halo and the galaxy population within it. In
particular, the number of galaxies in a halo, their luminosities and
their colours may all be correlated with the formation history. Our
halo-model description (and associated mock catalogue) ignores all
such correlations. To see this clearly, note that we assign luminosi-
ties and colours to the galaxies in a halo without regard for the
number of galaxies in it. Had we used a SHAM to assign luminosi-
ties, then some of correlation between formation history and the
galaxy population will have been included. If one is already carry-
ing along the particle distribution from the simulation to construct
the mock, then the next level of complication is to also include
additional information about the merger history in the simulation,
for use when making the mock.
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We also assign colours to satellite galaxies without explicit con-
sideration of the colour of the central galaxy, and we make no effort
to incorporate colour gradients within a halo into our model. This
is mainly because the two-point statistics we study in this paper,
weighted or unweighted, are known to be not very sensitive to gra-
dients (see Sheth et al. 2001; Scranton 2002; Sheth 2005; Skibba
2008 for more discussion and simple prescriptions for incorporating
colour gradients).

These are all interesting problems for the future (and they are
almost certainly not independent problems!), but the measurements
described in the next section do not require these refinements.

3.3 A halo-model description of colour–mark correlations

Mark correlations are an efficient way to quantify the correlation
between the properties of galaxies and their environment (Sheth,
Connolly & Skibba 2005). The two-point mark correlation function
is simply

M(r) ≡ 1 + W (r)

1 + ξ (r)
, (17)

where ξ (r) is the traditional two-point correlation function and W(r)
is the same sum over galaxy pairs separated by r, but now each
member of the pair is weighted by the ratio of its mark to the mean
mark of all the galaxies in the catalogue (e.g. Stoyan & Stoyan
1994; Beisbart & Kerscher 2000). In effect, the denominator divides
out the contribution to the weighted correlation function which
comes from the spatial contribution of the points, leaving only the
contribution from the fluctuations of the marks.

In models where a galaxy’s properties correlate with environ-
ment only because they correlate with host halo mass, but halo
abundances correlate with environment, it is relatively straight-
forward to write down a halo model of mark correlations (Sheth
2005). Since our model of central and satellite colours is precisely
of this form, we can build a halo model of colour–mark correlations.
Appendix B provides a detailed description of how this is done. In
principle, comparison of this prediction with measurements in the
SDSS data set allows a test of our approach.

Before performing this test with data, Fig. 4 shows a comparison
with measurements in the mock catalogue described in the previous
section. The halo population is from the Virgo Consortium’s Very
Large Simulation (VLS; Yoshida, Sheth & Diaferio 2001), and the
mock galaxies have Mr < −20.5. Luminosities and colours were
assigned as described above: the top panel shows M(r) as a function
of real-space separation when luminosity is the mark; the bottom
panel has g − r as the mark. Solid curves show the halo model pre-
diction, computed by inserting the mass dependence of the mean
marks for centrals and satellites into the mark correlation formal-
ism of Appendix B. The luminosity and colour–mark correlations
are significantly above unity, which clearly shows that in denser
environments we expect the luminosities of galaxies to be brighter
(top panel) and the colours to be redder (bottom panel). The mark
correlations also clearly show the transition from the one-halo term
to the two-halo term at r ∼ Mpc h−1, which is the virial radius of the
most massive haloes at z ∼ 0. The transition is more pronounced
than in the traditional unmarked correlation function ξ (r).

There is a reasonably good agreement between the halo model
calculation and the mocks for both the luminosity and colour–mark
correlation functions; the unmarked correlation functions ξ (r) agree
extremely well, so they are not shown. Both panels in the figure
show a similar but small discrepancy at similar scales, approxi-
mately where the one–two-halo term transition occurs. Although

Figure 4. Luminosity (top) and g − r colour (bottom) mark correlation
functions in a real-space mock catalogue in which Mr < −20.5. Solid
curves show the halo model predictions.

statistically significant, this discrepancy is small compared to the
significance with which the signal itself differs from unity: the halo
model calculations are qualitatively, if not quantitatively, correct
across a wide range in scales. The agreement between the model
and the mocks is encouraging; it suggests that much of the environ-
mental dependence of galaxy colour arises from the environmental
dependence of host halo mass.

4 C OMPARI SON W I TH SDSS

In this section, we compare colour mark projected correlation
functions predicted by the halo model to measurements in the
SDSS (York et al. 2000). We use two volume-limited large-scale
structure samples built from the New York University Value-
Added Galaxy Catalogue (Blanton et al. 2005b) from SDSS
Data Release (DR) 4 plus, which is a subset of SDSS DR5
(Adelman-McCarthy et al. 2007). We k-correct the magnitudes
to z = 0.1 using the KCORRECT V4 1 code of Blanton & Roweis
(2007); the magnitudes are also corrected for passive evolution.
Our fainter catalogue has limits −23.5 < 0.1Mr < −19.5, 0.017
< z < 0.082; it consists of 78 356 galaxies with mean density
n̄gal = 0.01061 (h−1Mpc)3. Our brighter catalogue has −23.5 <
0.1Mr < −20.5 and 0.019 < z < 0.125, and contains 73 468
galaxies with mean density n̄gal = 0.00280 (h−1 Mpc)3. These
luminosity thresholds approximately correspond to Mr < M∗ +
1 and Mr < M∗, where M∗ is the break in the Schechter function fit
to the r-band luminosity function (Blanton et al. 2003).

For the measured correlation functions and jackknife errors,
which require random catalogues and jackknife sub-catalogues, we
use the hierarchical pixel scheme SDSSPix,1 which characterizes
the survey geometry, including edges and holes from missing fields
and areas near bright stars. This same scheme has been used for
other clustering analyses (Scranton et al. 2005; Hansen et al. 2007)
and for lensing analyses (Sheldon et al. 2007).

Fig. 5 shows the distribution of g − r colours in our fainter (Mr <

−19.5) catalogue. The distributions of Petrosian and model colours

1 http://lahmu.phyast.pitt.edu/s̃cranton/SDSSPix
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Figure 5. Distribution of Petrosian (blue histogram) and model (red dashed
histogram) g − r colours in the Mr < −19.5 volume-limited catalogue.

are similar, although the model colours are slightly redder. The
mean Petrosian colour is 0.796, whereas the mean model colour
is 0.825. This is not unexpected – galaxies have colour gradients,
and model colours measure the colour on smaller scales. These
mean values are 0.850 and 0.885 in the brighter catalogue (Mr <

−20.5). The blue fractions of the Petrosian colours of the fainter
and brighter catalogues are, respectively, 44 and 37 per cent using
the fixed colour–magnitude cut (equation 4) and 47 and 43 per cent
using the double-Gaussian model (equations 1–3), and they are ≈6
per cent lower for the model colours.

We now present our colour–mark correlation functions. In prac-
tice, in order to obviate redshift-space calculations in the halo model
and redshift distortions in the data, we use the projected two-point
correlation function

wp(rp) =
∫

dr ξ (rp, π ) = 2
∫ ∞

rp

dr
r ξ (r)√
r2 − rp

2
, (18)

where r = √
rp

2 + π 2, rp and π are the galaxy separations per-
pendicular and parallel to the line of sight, and we integrate up to
line-of-sight separations of π = 40 Mpc h−1. We estimate ξ (rp, π )
using the Landy & Szalay (1993) estimator

ξ (rp, π ) = DD − 2DR + RR

RR
, (19)

where DD, DR and RR are the normalized counts of data–data, data–
random and random–random pairs at each separation bin. We then
define the marked projected correlation function

Mp(rp) = 1 + Wp(rp)/rp

1 + wp(rp)/rp
, (20)

which makes Mp(rp) ≈ M(r) on scales larger than a few Mpc. For
the SDSS measurements, we used random catalogues with 10 times
as many points as in the data; the error bars show the variance of
the measurements of 30 jackknife sub-catalogues.

Figs 6 and 7 compare the colour marked correlation functions for
the Mr < −19.5 and −20.5 catalogues with our predictions. The
solid and open points show the measurements for Petrosian and
model colours. The colour mark signals in the bottom panels are
stronger for Petrosian colours, at the 1σ level, for both luminosity

Figure 6. Projected two-point correlation function and g − r colour–mark
correlation function for Mr < −19.5. Points show SDSS measurements for
Petrosian (solid points) and model colours (open points), with jackknife
errors. Solid curves show the halo-model prediction when satellite galaxies
can be drawn from either the red or the blue sequences (equations 7–9);
dashed curve shows the prediction if satellites are drawn from the red se-
quence only (equation 1).

Figure 7. Projected two-point correlation function and g − r colour–mark
correlation function, like Fig. 6, but for Mr < −20.5. In the upper panel,
the correlation functions for galaxies redder and bluer than the colour cut
(equation 4) are also shown, for the SDSS galaxies (open squares) and mock
catalogue galaxies (open triangles). For clarity, error bars are only shown
for the full SDSS catalogue.

thresholds Mr < −19.5 and −20.5. Evidently, the environmental
dependence of Petrosian colours is stronger than that of model
colours. However, this is probably due to the fact that the red and
blue peaks are slightly more displaced from one another for Pet-
rosian rather than model colours.

The correlation function of galaxies split by colour is the mea-
surement that has traditionally been used to show the environmental
dependence of colour (e.g. Zehavi et al. 2005; Tinker et al. 2008).
The top panel in Fig. 7 shows such measurements for galaxies redder
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and bluer than the colour cut given by equation (4). Open squares
and triangles are for measurements in the SDSS and in a mock cat-
alogue constructed as described in the previous section. (The SDSS
galaxies were split by their Petrosian colours; the measurement is
virtually the same when they are split by model colours.)

The mock catalogue is at z = 0, whereas the SDSS measurements
(and corresponding theory curves) are at z ∼ 0.1. Therefore, to
compare the clustering of red and blue galaxies in our mock with
the measurements, we measure the ratio of wp,red to wp,all, and wp,blue

to wp,all in our z = 0 mock. We then assume that this ratio would be
the same at z = 0.1 as it is at z = 0; the triangles show the result of
applying this ratio to wp,all at z = 0.1 (i.e. the filled circles) – they
represent how the clustering of red and blue galaxies differs from
the full sample in our mock.

The agreement between the clustering of the mock galaxies and
SDSS galaxies is very good, indicating that our model reproduces
these traditional measurements of colour-dependent clustering very
well.

Because mark statistics do not require binning of the data set into
coarse bins in colour, or coarse bins in density, the mark correlation
functions shown in the lower panels of the figures contain sig-
nificantly more information about environmental correlations than
more traditional measures. They allow the mark to take a continuous
range in values, and they yield a clear, quantitative estimate of the
correlation between the mark and the environment at a given scale.
Mark statistics are also sensitive to the distribution of the marks:
for example, for the fainter luminosity threshold (Mr < −19.5),
the colour marks have a wider distribution than for the brighter
threshold, so some galaxies have colours farther from the mean
mark. Because these outliers also tend to be in more extreme envi-
ronments, the result is a stronger mark correlation (e.g. Mg−r (rp =
100 h−1 kpc) ≈ 1.23 versus 1.15). Note also that the mark correlation
functions are more curved for the fainter luminosity threshold, with
a more distinct transition between the one- and two-halo terms. This
is because there are more satellite galaxies in the fainter sample,
and the mark clustering is more sensitive to their spatial distribution
within haloes.

Note that the model in which no satellites come from the blue
sequence (dashed curve) produces too strong a signal: galaxies in
dense environments are too red. Since most of these are satellites,
this model places too many red satellites in massive haloes. The
difference between the two models is greater for the faint luminosity
threshold simply because there are more faint satellites, more of
whose colours should be drawn from the blue sequence. The model
in which satellites come from a mix of the two sequences, though
they are increasingly red at large luminosities (equations 7–9), is
in good agreement with the measurements on all scales where the
statistic is reliably measured. This suggests that this model of the
colours of central and satellite galaxies is a reasonable one. The
good agreement between our model and the data also indicates that
the correlation between halo mass and environment is the primary
driver of the environmental dependence of galaxy colour.

5 D ISCUSSION

We have developed and tested a simple model for several observed
correlations between colour and environment on scales of
100 h−1 kpc < rp < 30 h−1 Mpc. Our model is built upon the model
of luminosity mark clustering of Skibba et al. (2006), in which
the luminosity-dependent HOD was constrained by the observed
luminosity-dependent correlation functions and galaxy number den-
sities in the SDSS. The model presented here has added constraints

from the bimodal distribution of the colours of SDSS galaxies as
a function of luminosity. We make two assumptions: (i) that the
bimodality of the colour distribution at fixed luminosity is inde-
pendent of halo mass and (ii) that satellite galaxies tend to follow
a particular sequence in the colour–magnitude diagram, one that
approaches the red sequence with increasing luminosity (equa-
tion 7). Alternatively, this assumption can be phrased as specifying
how the fraction of satellites which are drawn from the red and blue
sequences depends on luminosity (equation 9).

One virtue of our model is the ease with which it allows one to
include colour information into mock catalogues. Adding colours to
a code which successfully reproduces luminosity-dependent clus-
tering requires just four simple lines of code – two for centrals
and two for satellites (Section 3.1). This is far more efficient than
‘brute-force’ approaches which are based on fitting HODs to fine
bins in L and colour, or others which are based on using observed
correlations between colour and local density. Since bimodality is
also observed at z = 1, it would be interesting to see if our approach
is similarly successful at interpreting the measurements of Coil et al.
(2008) in the DEEP2 survey.

Realistic colours are necessary for providing realistic training
sets for galaxy group- and cluster-finding algorithms, and a number
of groups are currently developing such mock catalogues. So, we
think it is worth emphasizing that our approach can be applied to any
mock catalogue which produces the correct luminosity-dependence
of clustering. Thus, although we phrased our discussion in terms of
an HOD-based mock, mocks based on CLFs or SHAMs could also
use our method for generating colours.

In particular, cluster-finding algorithms that exploit information
about brightest cluster galaxies (BCGs), or galaxies’ positions from
the red sequence, or galaxies’ redshift-distorted positions, or the
multiplicity function or total luminosity or stellar mass of groups,
could all be tested with mock catalogues constructed with the
approach described in this paper. We will be happy to provide our
mock catalogues to those interested, upon request.

More generally, we feel that the simplicity of our approach makes
it an attractive way to begin to include the entire spectral energy dis-
tribution into the halo-model description, and hence into mock cat-
alogues. Specifically, starting from our successful model for adding
g − r given L, the next step might be to add, say, u − r, given g −
r and L – again assuming that the distribution p(u − r|g − r, L) is
independent of halo mass. This is also attractive because we have
shown that such an approach is easily described using the language
of the halo model – Section 3.3 provides a halo-model description
of the colour–mark correlation function. This facilitates the use of
mark statistics in testing our hypothesis that the bimodal colour
distribution is independent of halo mass.

Comparison of our mark correlation measurements with measure-
ments in our mock catalogues and with our halo model calculations
(Figs 6 and 7) suggests that if the bimodal colour distribution is inde-
pendent of halo mass, then at least some of the non-central/satellite
galaxies in a halo must be drawn from the blue sequence – this
fraction of blue satellites must be larger at low luminosities. This is
one of the key results of our paper.

If satellites lie on the red sequence because their star forma-
tion has been quenched by processes such as ‘strangulation’ (e.g.
Weinmann et al. 2006), then our results suggest that quenching is
still on-going at lower luminosities. Such processes are expected
to modify the colours and star formation rates of satellite galaxies,
but not their morphologies; we investigate this further in a sub-
sequent paper by measuring morphology mark correlations in the
SDSS Galaxy Zoo catalogue. We caution, however, that we, like
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all previous halo-model analyses, have ignored the fact that the
inclination can affect the observed galaxy properties – luminosi-
ties and colours in the present context. Corrections for inclination-
related effects are available in the literature (Giovanelli et al. 1995;
Tully et al. 1998; Sheth et al. 2003), and they are not negligible.
Recent work on this by Maller et al. (2008), which appeared while
our work was being refereed, provides relatively straightforward
corrections which may be reasonably accurate. For this reason, our
work should be viewed as attempting a halo-model description of
the observed colours, rather than providing a truly physical picture
of the intrinsic (face-on?) colours. Of course, if the luminosities
and colours had been corrected for inclination effects, we expect
our analysis to also yield results which are closer to the true physical
picture. But, because we have not yet included these corrections,
we believe that statements about the physics of ‘strangulation’,
especially at low luminosities, are premature.

We expect our model to be in good agreement with the findings of
Zehavi et al. (2005), who analysed volume-limited SDSS samples
after dividing galaxies into two bins in colour. They used a slightly
redder colour cut than we did to produce the measurements shown
in the top panel of Fig. 7. They found that the fraction of central
galaxies which lay bluewards of this cut increased as L decreased;
that there were no faint blue satellites and that, although there are
blue satellites at intermediate and high L, they were about a factor
of 5 less common than red satellites in haloes of the same mass.
Our model is in qualitative agreement, with the mean central and
satellite galaxy colours increasing with both luminosity and halo
mass. Zehavi et al. inferred from their results that the majority of
bright galaxies are red centrals of massive haloes, and that faint
red galaxies are predominantly satellites in massive haloes. This is
consistent with Swanson et al. (2008), who found that both luminous
and faint red galaxies are more strongly clustered than moderately
bright red galaxies. We reach a similar conclusion, although not
all faint red galaxies are satellites in massive systems: some are
centrals in underdense environments.

We also expect our model to be in qualitative agreement with the
findings of Blanton & Berlind (2007). These authors defined blue
galaxies as those lying bluewards of g − r = 0.8 − 0.03(Mr + 20)
(our equation 4). They then found that the colour–magnitude rela-
tion for galaxies in luminous groups tended to have fblue decreasing
with group luminosity, but that the red and blue sequences were
otherwise approximately independent of group luminosity. They
phrased their findings as showing that the colour–magnitude rela-
tion depends on group luminosity, presumably because they wished
to draw attention to the dependence of fblue on group luminosity.
In light of the discussion above, we think this is slightly mislead-
ing. The red and blue sequences in our model are independent of
group properties by construction. In our model, the decrease of the
blue fraction in luminous groups is simply a consequence of the
assumption that satellites tend to be drawn from the red rather than
the blue sequence. This happens because more luminous groups
will tend to have more satellites and redder centrals (because cen-
tral galaxy luminosity increases with halo mass which is, in turn,
strongly correlated with total luminosity, and luminous galaxies are
red). Since our model has mainly red satellites, the red fraction is
larger in more luminous groups. Skibba (2008) describes the results
of a direct comparison of our model predictions with the colours of
centrals and satellites in group catalogues.

In our model, all environmental correlations arise from the fact
that massive haloes tend to reside in denser environments (Mo
& White 1996; Sheth & Tormen 2002). Recent studies of the
environmental dependence of halo assembly have shown that halo

properties such as formation time and concentration are correlated
with the environment at a fixed halo mass (Sheth & Tormen 2004;
Gao, Springel & White 2005; Wechsler et al. 2006; Croton, Gao
& White 2007b; Wetzel et al. 2007; Keselman & Nusser 2007; Zu
et al. 2008). They have found that at a fixed mass, haloes in dense
environments form at slightly earlier times than haloes in less dense
environments. The success of our model suggests that such ‘assem-
bly bias’ effects are not the primary drivers of the environmental
dependence of galaxy colours in the real universe, thus extending
previous conclusions about the insignificance of assembly bias on
galaxy luminosities (Skibba et al. 2006; Abbas & Sheth 2006, 2007;
Blanton & Berlind 2007; Tinker et al. 2008), at least for the rela-
tively bright galaxies in the SDSS. Further tests, such as the analyses
of luminosity and colour mark statistics of catalogues constructed
from semi-analytic models with known assembly bias, would shed
more light on these issues, and are the subject of a subsequent paper.

Our model does not include the galactic ‘conformity’ reported
by Weinmann et al. (2006), in which bluer centrals are likely to
be surrounded by bluer satellites, at a fixed halo mass. Including
this effect is the subject of work in progress. The main quantitative
predictions of our model, such as the mean central and satellite
colours as a function of mass, and the correlations between colour
and environment, are not expected to be significantly affected by
this phenomenon, however. Our model also does not include colour
gradients within haloes – it has long been known that satellite galax-
ies near halo centres tend to be redder than in the outskirts. In this
case, satellite colour marks depend on both the host halo mass
and on their distance from the halo centre. Halo-model analyses
show that this should only matter on small scales (see discussion of
fig. 4 in Sheth et al. 2001; Scranton 2002); for galaxy populations
with many satellite galaxies, the one-halo term of the colour mark
signal is expected to be slightly higher (Sheth 2005). Skibba (2008)
incorporates this effect, and does find such an increase at small
scales.

Finally, it is worth emphasizing that mark statistics are sensi-
tive indicators of the correlations between galaxy properties and the
environment, and as such are powerful tools for constraining galaxy
formation models. An analysis of marked correlation with star for-
mation rate marks in the SDSS and the Millennium Simulation is the
subject of work in progress. The halo-model description of marked
statistics, based on the luminosity dependence of galaxy cluster-
ing, also has many applications. In a forthcoming paper (Skibba
& Sheth, in preparation), we present a model of stellar mass mark
correlations and analyse them with SDSS measurements analogous
to the colour–mark correlations presented here.
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APPENDI X A : EXPLI CI T EXAMPLES OF
D I F F E R E N T H O D S

The main text outlines our model; actual implementation of it
depends on the form of the luminosity-based HOD. These are of
two types – either the relation between halo mass and central galaxy
luminosity is monotonic and deterministic, or there is some scatter.
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We use the parametrization of Zehavi et al. (2005) to illustrate the
former case, and that of Zheng et al. (2007) to illustrate the latter.
The results described in the main text are not particularly sensitive
to this choice, although the plots we are based on HODs in which
there is scatter.

A1 No scatter between Lcen and halo mass

To evaluate nsat/ncen, suppose that the relation between halo mass
and central luminosity is deterministic (i.e. there is no scatter around
the Lcen–m relation). Then,

ncen(L) = (dmL/dL) (dn/dm)mL
, (A1)

where halo model interpretations of SDSS galaxy clustering suggest
that

mL

1012 h−1 M�
≈ exp

(
L/1.12

1010 h−2 L�

)
− 1 (A2)

(Zehavi et al. 2005; Skibba et al. 2006), and the halo mass function
dn/dm is described in Sheth & Tormen (1999).

The number density of satellite galaxies which have luminosity
L, whatever the mass of the parent halo, is given by differentiating

nsat(> L) =
∫ ∞

mL

dm
dn

dm
Nsat(> L|m) (A3)

with respect to L. Zehavi et al. (2005) show that

Nsat(> L|m) ≈
(

m

23 mL

)αL

, (A4)

where mL is given by the expression above, and

αL ≈ 1.16 − 0.1(Mr + 20) + 0.1e−1.5(Mr+21.5)2
(A5)

is a weakly increasing function of L. Thus,

nsat(> L) =
[

exp

(
L/1.12

1010 h−2 L�
)

− 1

]−αL

×
∫ ∞

mL

dm
dn

dm

(
m/23

1012 h−1 M�

)αL

, (A6)

so
nsat(L)

ncen(L)
= 1

23αL
+ αL

nsat(> L)

(dn/d ln m)mL

− αL

d ln αL

d ln L

d ln L/d ln mL

(dn/d ln m)mL

×
∫ ∞

mL

dm
dn

dm

(
m/23

mL

)αL

ln

(
m/23

mL

)
, (A7)

and the fraction of objects which are centrals is

fcen(L) = ncen(L)

ncen(L) + nsat(L)
= 1

1 + nsat(L)/ncen(L)
. (A8)

To see what these expressions imply, suppose that αL were inde-
pendent of L. Then,

nsat(L)

ncen(L)
= α

nsat(> L)

(dn/d ln m)mL

+ 1

23α
, (A9)

and

〈c|m〉sat = 〈c|Lmin〉red +
∫ ∞

Lmin

dLC(L)

(
mLmin

mL

)α

. (A10)

In this case, the mean satellite colour is independent of halo mass.
If α = 1 (not far off from its actual value) and m(dn/dm) ∝
exp(−m/m∗)/m∗ for some fiducial value of m∗ (haloes more
massive than m∗ ≈ 1013 h−1 M� are indeed exponentially rare),

then nsat(>L) = exp (−mL/m∗)/(23mL) making nsat(L)/ncen(L) =
(m∗/mL + 1)/23. This ratio decreases as mL increases – as L in-
creases, the ratio of satellites to centrals decreases, and the fraction
of centrals increases.

In the analyses which follow, we use the actual halo model values
of these quantities rather than these approximations. A reasonable
fit to the actual halo model values is given by

nsat(L)

ncen(L)
≈ 0.35

[
2 − erfc

[
0.6(Mr + 20.5)

]]
(A11)

This ratio tends to 0.7 at small luminosities, making the fraction
of galaxies which are centrals at L � 1010 h−2 L� about 3/5 (cf.
equation A8) consistent with the satellite fraction f sat(L) of van den
Bosch et al. (2007a).

A2 Stochasticity in the Lcen−m relation

Zheng et al. (2007) allow for stochasticity in the relation between
halo mass and central galaxy luminosity. They assume that

P (log Lcen|M) = 1√
2πσlogL

exp

⎡
⎣− [log(Lcen/〈Lcen|M〉)]2

2σ 2
logL

⎤
⎦,

(A12)
and then set

〈Ncen|M〉 = 1

2

⎡
⎣1 + erf

⎛
⎝ log(M/Mmin)

σlogM

⎞
⎠

⎤
⎦ (A13)

and

〈Nsat|M〉 =
⎛
⎝M − M0

M ′
1

⎞
⎠

α

. (A14)

The Poisson model for satellite counts sets

〈Nsat(Nsat − 1)|M〉 = 〈Nsat|M〉2. (A15)

Their table 1 shows how all of the parameters in this HOD vary with
SDSS r-band luminosity. We have found that these scalings with Lr

are well approximated by

Mmin

1011.95 M� h−1
≈ exp

⎛
⎝ L

1010.0 L� h−2

⎞
⎠ − 1 (A16)

σlogM ≈
{

0.26 if Mr > −20.5

0.385 − 0.25 (Mr + 21), otherwise
(A17)

M
′
1 ≈ 17 Mmin (A18)

M0

1011.75 M� h−1
≈

⎛
⎝ L

109.9 L� h−2

⎞
⎠

0.6

(A19)

α ≈ 1 − 0.07 (Mr + 18.8). (A20)

As in Zehavi et al. (2005), the value of M′
1/Mmin, which determines

the critical mass above which haloes typically host at least one
satellite galaxy, is approximately independent of luminosity, while
the 〈Nsat〉 slope α, which characterizes the mass dependence of the
efficiency of galaxy formation, increases with luminosity. The two
new HOD parameters are σ logM and M0. They are not constrained
well and their uncertainties are large (see Zheng et al. for details),
but our correlation functions and colour–mark correlation functions
are not very sensitive to their exact values.
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For the two luminosity thresholds discussed in the main text,
Mr < −19.5 and −20.5, the parameters above are Mmin = 5.8 ×
1011 and 2.2 × 1012 h−1 Mpc, and the effective value of M1/Mmin

≈ 20, approximately independent of luminosity, is similar to the
factor of 23 in the Zehavi et al. HOD.

For our purposes, the main difference with this HOD model is the
scatter in luminosity at fixed mass. We first discuss how to construct
a mock catalogue that includes this scatter. We then explain how
our model of the colour mark is modified.

To account for the scatter between Lcen and Mhalo in the mock
catalogues, we do not simply select the subset of haloes in the
simulation which have M > Mmin(Lmin), as we do in the case of a
sharp threshold (e.g. Section 3.1). Instead, we generate uniformly
distributed random numbers u between 0 and 1 for each halo of
mass M. Then we keep the halo if u < 〈Ncen |M〉 (equation A13). As
a result, only half of the haloes with M ≈ Mmin are kept, as are quite
a few haloes with M < Mmin. Larger values of σ logM increase the
range of halo masses around Mmin and increase the total number of
haloes because the abundance of haloes increases with decreasing
mass.

Our halo model of the colour mark is also modified by the scatter
between luminosity and mass, and hence 〈Ncen |M, Lmin〉 is no
longer a step function. The central galaxy colour mark, described
in Section 2, is slightly more complicated. The mean central galaxy
colour as a function of luminosity 〈c|L〉cen (equation 15) depends on
the number density of central galaxies as a function of luminosity
ncen(L) (equation A1), which now includes an integral

ncen(L) = d

dL
ncen(> L)

=
(

dn

dM

)
ML

(
dML

dL

)

+
∫

dM
dn

dM

d

dL
〈Ncen|M,Lmin〉. (A21)

Then the central galaxy colour mark, which is used in the colour–
mark correlation functions, is also an integral (equation 16),

〈c|M〉cen =
∫

dL Pcen(L|M) 〈c|L〉cen. (A22)

The model of the colour–mark correlation functions, described in
Appendix B, is also modified. However, we reiterate that, in general,
the correlation functions and colour–mark correlation functions are
not sensitive to the exact amount of scatter in mass at a fixed lumi-
nosity.

APPEN D IX B: A HALO MODEL O F
C O L O U R – M A R K C O R R E L AT I O N S

We perform our halo model calculations in Fourier space. The two-
point correlation function is the Fourier transform of the power
spectrum

ξ (r) =
∫

dk

k

k3P (k)

2π 2

sin kr

kr
. (B1)

In the halo model, P(k) is written as the sum of two terms: one that
arises from galaxies within the same halo and dominates on small
scales (the one-halo term), and the other from galaxies in different
haloes which dominate on larger scales (the two-halo term). That
is,

P (k) = P1h(k) + P2h(k), (B2)

where

P1h(k) =
∫

dM
dn(M)

dM
〈Ncen|M〉

×
⎡
⎣ 2 〈Nsat|M〉 ugal(k|M)

n̄2
gal

+ 〈Nsat(Nsat − 1)|M〉 ugal(k|M)2

n̄2
gal

⎤
⎦,

(B3)

P2h(k) =
⎡
⎣∫

dM
dn(M)

dM
〈Ncen|M〉

× 1 + 〈Nsat|M〉 ugal(k|M)

n̄gal
b(M)

⎤
⎦

2

Plin(k), (B4)

where the number density of galaxies n̄gal is (cf., equation A3)

n̄gal =
∫

dm
dn(m)

dm
〈Ncen|m〉

[
1 + 〈Nsat|m〉

]
(B5)

and ugal(k|M) is the Fourier transform of the galaxy density profile.
It is standard to assume this has the same form as the dark mat-
ter, so we use the form for u given by Scoccimarro et al. (2001).
The distribution psat(Nsat) is expected to be well-approximated by
a Poisson distribution (e.g. Kravtsov et al. 2004; Yang, Mo & van
den Bosch 2008), so we set 〈Nsat(Nsat − 1)|M〉 = 〈Nsat|M〉2. The two
parts of the one-halo term in equation (B3) can be thought of as the
‘centre-satellite term’ and the ‘satellite-satellite term.’

To describe the effect of weighting each galaxy, we use W(k) to
denote the Fourier transform of the weighted correlation function.
Like the power spectrum, we write this as the sum of one- and two-
halo terms: W(k) = W1h(k) + W2h(k). Since central and satellite
galaxies have different properties, we weight central and satellite
galaxies separately by their mean mass-dependent marks: 〈c|m〉cen

and 〈c|m〉sat (Section 2). Following Sheth (2005), we write

W1h(k) =
∫

dM
dn(M)

dM
〈Ncen|M〉

×
⎡
⎣ 2 ccen(M) 〈csat|M,Lmin〉 〈Nsat|M〉 ugal(k|M)

n̄2
gal c̄

2

+ 〈Nsat|M〉2 〈csat|M,Lmin〉2 u2
gal(k|M)

n̄2
gal c̄

2

⎤
⎦, (B6)

W2h(k)

Plin(k)
=

⎡
⎣∫

dM
dn(M)

dM
〈Ncen|M〉 b(M)

× ccen(M) + 〈Nsat|M〉 〈csat|M,Lmin〉 ugal(k|M)

n̄gal c̄

⎤
⎦

2

,

(B7)

where we normalize by the mean colour mark

c̄ =
∫

dM
dn(M)

dM
〈Ncen|M〉

× ccen(M) + 〈Nsat|M〉 〈csat|M,Lmin〉
n̄gal

. (B8)
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