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ABSTRACT
We use the kinematics of satellite galaxies that orbit around the central galaxy in a dark matter
halo to infer the scaling relations between halo mass and central galaxy properties. Using
galaxies from the Sloan Digital Sky Survey, we investigate the halo mass–luminosity relation
(MLR) and the halo mass–stellar mass relation (MSR) of central galaxies. In particular, we
focus on the dependence of these scaling relations on the colour of the central galaxy. We find
that red central galaxies on average occupy more massive haloes than blue central galaxies
of the same luminosity. However, at fixed stellar mass there is no appreciable difference in
the average halo mass of red and blue centrals, especially for M∗ � 1010.5 h−2 M�. This
indicates that stellar mass is a better indicator of halo mass than luminosity. Nevertheless,
we find that the scatter in halo masses at fixed stellar mass is non-negligible for both red
and blue centrals. It increases as a function of stellar mass for red centrals but shows a fairly
constant behaviour for blue centrals. We compare the scaling relations obtained in this paper
with results from other independent studies of satellite kinematics, with results from a SDSS
galaxy group catalog, from galaxy–galaxy weak lensing measurements and from subhalo
abundance matching studies. Overall, these different techniques yield MLRs and MSRs in
fairly good agreement with each other (typically within a factor of 2), indicating that we are
converging on an accurate and reliable description of the galaxy–dark matter connection. We
briefly discuss some of the remaining discrepancies among the various methods.

Key words: methods: statistical – galaxies: haloes – galaxies: kinematics and dynamics –
galaxies: structure – dark matter.

1 IN T RO D U C T I O N

The growth of structure in the Universe is predominantly driven
by dark matter. The fluctuations in the dark matter density field
grow under the action of gravity and form a web-like structure.
Galaxies form as baryon condensates at the density peaks of this
cosmic web. Understanding the connection between the distribution
of galaxies and the underlying distribution of dark matter is crucial
to understand the physics of galaxy formation. This galaxy–dark
matter connection is often expressed in terms of the scaling relations
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between the properties of galaxies and the mass of the dark matter
halo in which they reside. Reliable measurements of the dark matter
halo mass are essential to quantify these scaling relations. This
can be accomplished with the help of numerous methods. These
include techniques that are primarily used on individual systems
such as rotation curves (e.g. Rubin et al. 1982), strong lensing of
background galaxies (e.g. Gavazzi et al. 2007) and X-ray emission
from hot gas in clusters (e.g. Dai, Kochanek & Morgan 2007; Rykoff
et al. 2008). With the advent of large-scale galaxy redshift surveys,
substantial progress has been made with methods that allow the
inference of the dark matter halo masses in a statistical sense, e.g.
the average halo mass as a function of various properties of galaxies.
Such methods include the modelling of the clustering of galaxies
(e.g. Yang, Mo & van den Bosch 2003; Zehavi et al. 2004; Collister
& Lahav 2005; Tinker et al. 2005; Zehavi et al. 2005; Skibba et al.
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2006; van den Bosch et al. 2007; Brown et al. 2008; Skibba & Sheth
2009), galaxy–galaxy weak lensing (e.g. Seljak 2000; McKay et al.
2001; Mandelbaum et al. 2006; Parker et al. 2007; Mandelbaum,
Seljak & Hirata 2008; Schulz, Mandelbaum & Padmanabhan 2009)
and a combination of the two (e.g. Yoo et al. 2006; Cacciato et al.
2009; Li et al. 2009).

The satellite galaxies that orbit within the dark matter haloes of
their central galaxies are also excellent probes of the dark matter
halo mass. Their kinematics reflect the depth of the dark matter
potential well they orbit. The number of satellites in massive sys-
tems like clusters is large enough to obtain a reliable measure of
their kinematics and hence the halo mass (e.g. Carlberg et al. 1996;
Carlberg, Yee & Ellingson 1997). However, in low-mass systems,
where only a handful of satellites can be detected per central, one has
to adopt a stacking procedure to quantify the kinematics of satellites
(Erickson, Gottesman & Hunter 1987; Zaritsky et al. 1993; Zaritsky
& White 1994; Zaritsky et al. 1997). Central galaxies with similar
properties (e.g. luminosity) are stacked together and the velocity
information of their satellites is combined to obtain a quantita-
tive measure of the kinematics of the satellites. Various studies of
the kinematics of satellite galaxies have now been carried out us-
ing large redshift surveys to improve the sample size of satellites
(McKay et al. 2002; Brainerd & Specian 2003; Prada et al. 2003;
Conroy et al. 2005; Becker et al. 2007; Conroy et al. 2007; Norberg,
Frenk & Cole 2008). The sample sizes in these studies have been
limited by their use of strict isolation criteria to identify centrals and
satellites, specifically designed to avoid misidentifications. van den
Bosch et al. (2004) devised relaxed selection criteria which were
iteratively adapted to the luminosity of central galaxies to circum-
vent this problem. Their criteria improved the sample size by nearly
an order of magnitude over studies that use strict isolation criteria
while still maintaining low levels of contamination. The improved
statistics have warranted a better study of the systematics and se-
lection effects that bias the kinematic measurements (Norberg et al.
2008).

In More, van den Bosch & Cacciato (2009b, hereafter Paper I), we
showed that if the relation between the halo mass and the stacking
property has a non-negligible scatter then the kinematics of the
satellites of the stacked system can be difficult to interpret. This
issue has been neglected by most previous studies. We presented a
new method to infer both the average halo mass and the scatter in
halo masses as a function of the property used to stack the central
galaxies. In More et al. (2009a, hereafter Paper II), this method was
applied to galaxies from the Sloan Digital Sky Survey (SDSS) (York
et al. 2000) to infer the halo mass–luminosity relation of central
galaxies (hereafter MLR). It was found that both the average and the
scatter of the MLR of central galaxies increase with the luminosity
of the central galaxy.

The scatter in the MLR is an interesting quantity, as it is related
to the stochasticity in galaxy formation. Two important, related
questions are: (i) what is the physical origin of this stochasticity,
and (ii) what galaxy property is most closely related to the mass of
the halo in which it resides (i.e. shows the least amount of scatter
at a given halo mass). The answer to (i) yields valuable insight into
the physics of galaxy formation, while the answer to (ii) identifies
the optimal galaxy property to trace the cosmic density field. It
is well known that galaxies of the same stellar mass may have
very different luminosities, even after correction for dust extinction.
Galaxies with younger stellar populations will typically be bluer and
more luminous than galaxies of the same stellar mass, but with an
older stellar population. It may well be that the stellar mass of a
central galaxy is a better indicator of halo mass than its luminosity,

in which case the halo mass–stellar mass relation of central galaxies
(hereafter MSR) will have less scatter than the MLR, and the scatter
in the MLR will be correlated with the colour of the central galaxy.
Obviously, since we lack a complete theory of galaxy formation, it
may also be that the opposite holds, and that the scatter in the MLR is
actually less than that in the MSR. In this paper, we investigate these
issue by measuring the kinematics of satellite galaxies as functions
of both the luminosity and stellar mass of centrals split by colour
into red and blue subsamples. Using the methodology outlined in
Paper I, we use these to probe both the means and scatters of the
MLR and MSR of red and blue galaxies.

This paper is organized as follows. In Section 2, we describe the
data used in this paper. In Section 3, we explain our method of
analysis. In particular, we describe the procedure used to identify
the centrals and the satellites, the measurement of the kinematics of
satellites and the subsequent modelling to determine the halo masses
of central galaxies. In Section 4 we present our results and compare
them with other independent studies. Finally, we summarize our
findings in Section 5.

Throughout this paper we adopt the cosmological parameters
supported by the 7-yr data release of WMAP (Komatsu et al. 2010);
�m = 0.266, �� = 0.734, h = H0/100 km s−1 Mpc−1 = 0.71, the
spectral index of initial density fluctuations ns = 0.963 and the
normalization of the power spectrum of density fluctuations σ 8 =
0.809. We use the symbol M to refer to the mass of a dark matter
halo, which is defined as the mass enclosed within a spherical
overdensity δρ/ρ̄ = 200, where ρ̄ denotes the mean matter density
of the universe.

2 DATA

We use data from the SDSS which is a joint five-passband (u, g, r,
i and z) imaging and medium-resolution (R ∼ 1800) spectroscopic
survey (York et al. 2000). More specifically, we use the New York
University Value Added Galaxy Catalogue (Blanton et al. 2005),
which is based upon SDSS Data Release 4 (Adelman-McCarthy
et al. 2006) but includes a set of significant improvements over the
original pipelines. The magnitudes and colours of the galaxies are
based upon the standard SDSS Petrosian technique and have been
k-corrected and evolution corrected to z = 0.1 using the method
described in Blanton et al. (2003a,b). The notations 0.1(g − r) and
0.1Mr − 5 log h are used to denote the resulting (g − r) colour and the
absolute magnitude of the galaxies. From this catalogue, we select
all galaxies in the main galaxy sample with apparent magnitudes
less than 17.77 that lie in an area where the redshift completeness
limit of the survey C > 0.8. Next we construct a volume-limited
sample that is complete in luminosity above a 0.1r-band luminosity
of Lmin = 109.5 h−2 L�.1 The redshift range that we adopt for this
volume-limited sample is 0.02 ≤ z ≤ 0.071, which results in a total
sample of 55 415 galaxies.

Stellar masses are indicated by M∗ and are computed using the
relation between the stellar mass-to-light ratio and the 0.0(g − r)
colour provided by Bell et al. (2003):

log

[
M∗

h−2 M�

]
= −0.306 + 1.097 [0.0(g − r)] − 0.10

− 0.4 (0.0Mr − 5 log h − 4.64). (1)

1 The 0.1r-band magnitude of the Sun in the AB system equal to 4.76
(Blanton et al. 2003a) is used to convert the absolute magnitude of a galaxy
to its luminosity in units of h−2 L�.
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Here 0.0(g − r) and 0.0Mr − 5 log h denote the (g − r) colour and the
r-band absolute magnitude of galaxies k-corrected and evolution
corrected to z = 0.0, 4.64 is the r-band magnitude of the Sun in the
AB system, and the −0.10 term is a result of adopting the Kroupa
(2001) initial mass function (see Borch et al. 2006). The typical
uncertainties in the stellar masses obtained in this manner are of the
order of ∼0.1 dex (Bell et al. 2003).

We classify galaxies to be red or blue based upon their bimodal
distribution in the 0.0(g − r) colour–stellar mass plane (Baldry et al.
2004). We use the following separation criterion to demarcate the
boundary between red and blue galaxies in the colour–stellar mass
plane (see Appendix A):

0.0(g − r)cut = 0.65 + 0.10
{

log
[
M∗/(h−2 M�)

] − 10.0
}

. (2)

3 ME T H O D O L O G Y

3.1 Selection criteria

The first step towards measuring the kinematics of satellite galaxies
in the SDSS is to accurately identify central galaxies and their
associated satellites. For our analysis of the MLR we proceed as
follows. A galaxy is identified to be a central if it is brighter than
every other galaxy within a cylindrical volume specified by R < Rh

and |�V| < (�V)h centred on itself. Here R is the physical distance
from the galaxy under consideration projected on the sky and �V
is the line-of-sight (hereafter los) velocity difference between two
galaxies. All galaxies that lie within a cylindrical volume specified
by R < Rs and |�V| < (�V)s around a central galaxy, and that are
fainter than the central galaxy, are labelled to be its satellites. The
criteria used to select the sample of central and satellite galaxies for
the analysis of the MSR are almost identical, except that in this case
the central galaxy must have the largest stellar mass in its cylindrical
volume specified by Rh and (�V)h.

The parameters Rh, (�V)h, Rs and (�V)s define the sizes of the
cylinders used to identify central galaxies and their satellites. Con-
trary to most previous studies of satellite kinematics (McKay et al.
2002; Brainerd & Specian 2003; Prada et al. 2003; Conroy et al.
2005, 2007; Norberg et al. 2008), we do not use fixed values for these
parameters. Rather, since halo mass is expected to be positively cor-
related with the luminosity or stellar mass of the central galaxies,
we scale the selection parameters according to the property of the
galaxy under consideration. Following van den Bosch et al. (2004),
we adopt Rh = 0.8σ 200 h−1 Mpc, (�V)h = 1000σ 200 km s−1, Rs =
0.15σ 200 h−1 Mpc and (�V)s = 4000 km s−1. Here σ 200 is the satel-
lite velocity dispersion in units of 200 km s−1, which we parametrize
as

σ200(log Q10) = a + b(log Q10) + c(log Q10)2, (3)

where Q10 is either the central galaxy luminosity in units of
1010 h−2 L� or the stellar mass in units of 1010 h−2 M�, depending
upon the property used to stack central galaxies. Clearly, since the
determination of σ 200 requires a sample of centrals and satellites,
this selection method has to be iterative. Fixed values of the se-
lection criteria parameters are used to identify the central and the
satellite galaxies in the first iteration. The velocity dispersion of
the selected satellites as a function of the central galaxy property,
parametrized via equation (3), is fit using a maximum likelihood
method and subsequently used to scale the values of the param-
eters that define the selection criteria. These are used to select a
new sample of centrals and satellites, and the entire procedure is

Table 1. Selection criteria parameters.

Samples a b c Centrals Satellites

LA 2.19 0.38 0.32 3755 5953
LR 2.23 0.38 0.29 2602 4682
LB 2.11 0.46 −0.16 997 1151
SA 2.07 0.22 0.21 3675 6004
SR 2.11 0.19 0.20 2963 5230
SB 1.98 0.48 −0.17 751 666

The parameters a, b and c that define the criteria used to select central
and satellite galaxies for all the samples used in this paper (see text),
and the total numbers of centrals and satellites thus selected.

repeated until convergence.2 Using detailed mock galaxy redshift
surveys, van den Bosch et al. (2004) have shown that this itera-
tive technique yields much lower interloper fractions than the more
common method using fixed cylindrical volumes (see also Paper II).
For completeness, and to allow the reader to reproduce our results,
Table 1 lists the final iteration criteria used for our various samples
(in terms of the parameters a, b and c that appear in equation 3),
as well as the total number of centrals and satellites selected in
each sample. Note that these parameters differ depending on the
centrals we choose to stack for our analysis. The sample of centrals
and satellites selected when the selection criteria are tuned based
on the velocity dispersion around all centrals stacked by luminosity
(stellar mass) is called Sample LA (SA). Samples LR (SR) and LB
(SB) are selected by tuning the selection criteria parameters based
upon the velocity dispersion around red and blue centrals stacked
by luminosity (stellar mass), respectively.

3.2 Velocity dispersion measurement

In Paper I we demonstrated that the commonly measured velocity
dispersion of satellite galaxies, σ sat, cannot be used to uniquely
determine the scaling relation between halo mass and a central
galaxy property unless this relation has zero scatter. In fact, we
have shown that different scaling relations with different amounts
of scatter can yield exactly the same σ sat. In the same paper, how-
ever, we have shown that this degeneracy can be broken using a
combination of two different measures for the velocity dispersion
of the satellite galaxies: satellite-weighted (σ 2

sw) and host-weighted
(σ 2

hw). To measure the velocity dispersion in these two different
schemes, the satellite galaxies in the final sample are first binned
into subsamples based upon the properties (luminosity or stellar
mass) of their central galaxies. For each bin, the distribution of los
velocities of satellite galaxies with respect to their centrals, P(�V),
is constructed by either giving each satellite equal weight (satellite-
weighting) or a weight equal to 1/Nsat (host-weighting), where Nsat

denotes the number of satellites around the host of the satellite under
consideration. As shown in Paper I, the difference between σ 2

sw and
σ 2

hw depends on the amount of scatter in the scaling relation between
halo mass and central galaxy property,3 and allows the degeneracy
to be broken.

In order to extract the satellite velocity dispersion (satellite-
weighted or host-weighted) from the corresponding P(�V) dis-
tributions, we fit P(�V) using the sum of two Gaussians plus a

2 We refer the reader to Paper II and van den Bosch et al. (2004) for details
regarding this method.
3 In the case of zero scatter, one has that σ sw = σ hw.
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constant:

P (�V ) = a0 + a1 exp

[−(�V 2)

2σ 2
1

]
+ a2 exp

[−(�V 2)

2σ 2
2

]
. (4)

The satellite velocity dispersion (satellite-weighted or host-
weighted) then follows from

σ 2
(sw/hw) =

[
a1 σ 3

1 + a2 σ 3
2

a1 σ1 + a2 σ2

]
− σ 2

err . (5)

Here σ err is the contribution to the effective variance of P(�V)
due to redshift errors in the SDSS. Given that each individ-
ual galaxy has a redshift error of ∼35 km s−1, the error on the
velocity difference, �V , of the central and satellite galaxies is
σerr = √

2 × 35 � 49.5 km s−1, which is the value we adopt
throughout. The error bars on the velocity dispersions were esti-
mated as the variance in the velocity dispersions obtained by fit-
ting 1000 realizations of the P(�V) histogram (generated assuming
Poisson error bars) with the procedure described above. Detailed
tests using mock catalogues have shown that the above method
yields extremely reliable estimates of the actual velocity disper-
sions (see Paper II).

Applying this method to the central-satellite samples selected
using the criteria described in Section 3.1, we obtained the satellite-
weighted and host-weighted velocity dispersions as well as the
average number of satellites per central as a function of luminosity
for samples LA, LR and LB, and as a function of stellar mass for
samples SA, SR and SB. In addition, we also measured the fraction
of red central galaxies as a function of luminosity from Sample LA
and as a function of stellar mass from Sample SA. In the following
subsection we describe how to use these data to constrain the MLR
and MSR of central galaxies.

3.3 The model

The satellite-weighted and host-weighted velocity dispersions of
satellites and the average number of satellites of a central galaxy
with a given property depend on the distribution of halo masses
of central galaxies with that property, P(M|Q). Therefore these
observables can be used to infer the mean and the scatter of the
scaling relation between halo mass and the central galaxy property.
The analytical expressions that describe these three quantities are
given by (see Paper I):

σ 2
sw(Q) =

∫ ∞
0 P (M|Q) 〈Ns〉ap,M

〈
σ 2

sat

〉
ap,M

dM∫ ∞
0 P (M|Q) 〈Ns〉ap,MdM

, (6)

σ 2
hw(Q) =

∫ ∞
0 P (M|Q)P(M)

〈
σ 2

sat

〉
ap,M

dM∫ ∞
0 P (M|Q)P(M) dM

, (7)

〈Ns〉(Q) =
∫ ∞

0 P (M|Q)〈Ns〉ap,MdM∫ ∞
0 P (M|Q)P(M)dM

. (8)

Here 〈Ns〉ap,M and 〈σ 2
sat〉ap,M denote the average number of satellites

and the average velocity dispersion of satellites within the aper-
ture Rs in a halo of mass M, respectively. The factor P(M) is the
fraction of haloes of mass M that host at least one satellite. Our
way of modelling the observables thus consists of two parts: (i)
the kinematics of satellite galaxies in a single halo of a given mass
and (ii) the statistics that describe how central and satellite galaxies
occupy haloes. We describe each of these parts in the following
subsections.

3.3.1 Kinematics in a single halo

We assume that dark matter haloes are spherically symmetric and
that their density distributions follow the universal NFW profile
(Navarro, Frenk & White 1997),

ρ(r|M) ∝
(

r

rs

)−1 (
1 + r

rs

)−2

, (9)

where rs is a scale radius specified in terms of the virial radius
rvir using the concentration parameter, c = rvir/rs. We use the
concentration–mass relation from Macciò et al. (2007), appropri-
ately modified for our definition of the halo mass. We assume that
the number density distribution of satellite galaxies, nsat(r|M), is
given by

nsat(r|M) ∝
(

r

Rrs

)−γ (
1 + r

Rrs

)γ−3

. (10)

Here γ represents the slope of the number density distribution of
satellites as r → 0 and R is a free parameter. Throughout this paper,
we use the result from Paper II that the number density distribution
of satellites in the SDSS can be well described by equation (10) with
γ = 0.0 and R = 2 (see also Yang et al. 2005 and More 2009c).
The distribution nsat(r|M) is normalized such that

〈Ns〉(M) = 4π

∫ rvir

0
nsat(r|M) r2 dr , (11)

where 〈Ns〉(M) denotes the average number of satellites in a halo of
mass M. The number of satellites within the aperture, 〈Ns〉ap,M , is
then given by

〈Ns〉ap,M = 4π

∫ Rs

0
R dR

∫ rvir

R

nsat(r|M)
rdr√

r2 − R2
. (12)

We further assume that the satellite occupation numbers follow
Poisson statistics, which is supported both by direct observations
(e.g. Yang, Mo & van den Bosch 2008) and by numerical simulations
(Kravtsov et al. 2004). The fraction of central galaxies that have at
least one satellite within the aperture radius Rs is then given by

P(M) = 1 − exp[−〈Ns〉ap,M ]. (13)

To find an analytical expression for 〈σ 2
sat〉ap,M , first note that the

Jeans equation can be used to find an expression for the radial
velocity dispersion of satellites at a radial distance r from the centre:

σ 2
sat(r|M) = c V 2

vir

R2μ(c)

(
r

Rrs

)γ (
1 + r

Rrs

)3−γ

×
∫ ∞

r/rs

μ(x)dx

(x/R)γ+2(1 + x/R)3−γ
. (14)

Here Vvir is the circular velocity at rvir and

μ(x) =
∫ x

0
y(1 + y)−2dy , (15)

(see Paper I for a detailed derivation). If the velocity dispersion
of the satellites is assumed to be isotropic, then 〈σ 2

sat〉ap,M can be
expressed as the average of the radial velocity dispersion, σ 2

sat(r|M),
over the aperture Rs:

〈
σ 2

sat

〉
ap,M

= 4π

〈Ns〉ap,M

∫ Rs

0
R dR

×
∫ rvir

R

nsat(r|M) σ 2
sat(r|M)

rdr√
r2 − R2

. (16)

We note that in order to derive the aperture averaged velocity
dispersion in a halo of given mass, we made two key assumptions:
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(i) the dark matter halo is spherically symmetric and, (ii) the or-
bits of the satellites are isotropic. The first assumption is justified
because we are modelling the velocity dispersion of satellites that
were obtained by stacking central galaxies without regard to their
orientation. This to first order, erases out effects of non-sphericity
in the potential of haloes. The effects of anisotropic orbits were
studied analytically by van den Bosch et al. (2004). It was found
that although the anisotropy in the orbits of satellite galaxies can
affect the radial velocity dispersion profiles, the aperture-averaged
velocity dispersions, like the ones we use, are more robust against
biases introduced by anisotropic orbits.

3.3.2 Halo occupation statistics

To model the kinematics of satellite galaxies around central galaxies
stacked by a particular property, we need to specify the distribution
of halo masses for central galaxies with that property, P(M|Q). Let
us first consider the case of central galaxies stacked by luminosity
and colour. In this case, Q ≡ L ∩ C, where L denotes the luminosity
of the central galaxy and C its colour. We will use the letters R
for red and B for blue when referring to the actual colours. Using
Bayes’ theorem,

P (M|L ∩ C) = P (L|M ∩ C) fC(M) P (M)

fC(L) P (L)
. (17)

Here P(L|M ∩ C) describes the distribution of central galaxy lumi-
nosities in haloes of mass M that host central galaxies of a particular
colour C, fC(M) = P(C|M) is the fraction of haloes of mass M that
host a central galaxy of colour C and P(M) is proportional to the
halo mass function n(M).4 Note that the denominator has no depen-
dence on M and is just a multiplicative normalization constant which
cancels out when we model our observables (see equations 6–8).

We use simple parametric forms to model the distribution
P(L|M ∩ C) and fC(M). The distribution P(L|M ∩ C) is assumed
to be a lognormal given by

P (L|M ∩ C) = log(e)√
2πσlog L

exp

[
− (log[L/L̃])2

2σ 2
log L

]
dL

L
. (18)

Here log L̃(C, M) denotes the mean of the lognormal distribution
and σ log L(C) is the corresponding scatter. We use four parameters
each to specify the relations L̃(R, M) and L̃(B, M): a low-mass end
slope, γ 1; a high-mass end slope, γ 2; a characteristic mass scale,
M1; and a normalization, L0:

L̃ = L0
(M/M1)γ1

[1 + (M/M1)]γ1−γ2
. (19)

We further assume that the scatters σ log L(R) and σ log L(B) are inde-
pendent of halo mass. Thus for each colour C, we use five param-
eters to describe the distribution P(L|M ∩ C). This parametrization
is motivated by the results of Yang et al. (2008), who inferred the
conditional luminosity function using the large SDSS galaxy group
catalogue of Yang et al. (2007).

The function fR(M) is assumed to be linear in log M:

f ′
R(M) = f0 + αf [log(M/h−1M�) − 12.0],

fR(M) = min{max[0, f ′
R(M)], 1.0}, (20)

4 For the analysis in this paper, we use the halo mass function of Tinker et al.
(2008) for which haloes are defined as spheres with an average density that
is 200 times the average matter density in the universe.

where the second equality takes into account that fR is a fraction,
and therefore bounded by zero and unity (cf. van den Bosch et al.
2003). Also note that fB(M) = 1 − fR(M), as ‘red’ and ‘blue’ form
a mutually exclusive and exhaustive set of colours assigned to the
central galaxies. Hence, fR(M) and fB(M) add a total of two free
parameters to our model.

We also need a model for the satellite occupation numbers,
〈Ns〉(M). Throughout we assume that the number of satellite galax-
ies in a halo of mass M scales with halo mass as

〈Ns〉(M) = N12

(
M

1012 h−1M�

)α

, (21)

which adds two more parameters to our model; N12 and α. We
experimented by setting 〈Ns〉(M) to zero when it falls below Ncut

to mimic an exponential cut-off in 〈Ns〉(M) at small halo masses,
with values of Ncut ranging from 0.001 to 0.1 and found that it
does not significantly affect our results. Also note that we assume
that 〈Ns〉(M) is independent of the colour of the central galaxies.
Although we believe this to be a realistic assumption, we will discuss
the potential impact of its violations in Section 4.

Next, consider the case where galaxies are stacked only according
to their luminosity, i.e. Q ≡ L. To model the observables we need
to know the distribution

P (M|L) = P (L|M) P (M)

P (L)
∝ P (L|M) n(M) . (22)

The distribution P(L|M) is related to the distributions P(L ∩ R|M)
and P(L ∩ B|M) according to

P (L|M) = P (L|M ∩ R)fR(M) + P (L|M ∩ B)fB (M). (23)

Finally, the expression that describes the fraction of red centrals as
a function of central galaxy luminosity is given by

fR(L) =
∫ ∞

0 P (L|M ∩ R)P(M) n(M) fR(M)dM∫ ∞
0 P (L|M)P(M) n(M)dM

. (24)

Note that we have appropriately corrected for the fact that the ob-
served fraction of red centrals is calculated using only those centrals
that have at least one satellite.

Hence, our analytical model has a total of 14 free parameters and
completely describes the kinematics of satellite galaxies and the
average number of satellites around centrals stacked by luminosity
in Samples LA, LR and LB. This analytical framework also allows
us to calculate the fraction of red centrals as a function of luminosity.

For the analysis of the kinematics of satellite galaxies around
centrals stacked by stellar mass, there is an additional complication
that has to be addressed. The central and satellite galaxies used
for our analysis are selected from a volume-limited sample that
is complete above a certain luminosity. Since we have used both
colour and luminosity to assign the stellar masses, our sample starts
to become incomplete in stellar mass roughly below 1010 h−2 M�.
The completeness is a function of both stellar mass and colour, and
is described by the sample selection function S(M∗, C), defined as
the fraction of galaxies of stellar mass M∗ and colour C in the SDSS
volume with 0.02 ≤ z ≤ 0.071 (i.e. our sample volume) that make
it into the sample. The determination of S(M∗, C) is discussed in
Appendix A.

The sample selection function S(M∗, C) enters our model in
the following way. We can write the stacking property as Q ≡
M∗ ∩ C ∩ Ŝ, where we use Ŝ to denote the subset of all galaxies
with stellar mass M∗ and colour C in our sample volume that make
it into the sample. The corresponding distribution of halo masses,
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P (M|M∗ ∩ C ∩ Ŝ), can then be written as

P (M|M∗ ∩ C ∩ Ŝ) = P (Ŝ|M ∩ M∗ ∩ C) P (M ∩ M∗ ∩ C)

P (M∗ ∩ C ∩ Ŝ)

= S(M∗, C)

P (M∗ ∩ C ∩ Ŝ)
fC(M) P (M) P (M∗|M ∩ C) . (25)

In the second equality, we have identified the distribution P (Ŝ|M ∩
M∗ ∩ C) as the selection function, S(M∗, C). In addition, we have
also expressed P(M ∩ M∗∩C) in terms of P(M∗|M ∩ C). Note that
the selection function does not depend on the halo mass M and
acts as a multiplicative normalization constant for the distribution
P (M|M∗ ∩ C ∩ Ŝ). It harmlessly cancels out from the expressions
that analytically describe the observables when central galaxies are
stacked by colour. However, it turns out to be important for calculat-
ing P (M|M∗ ∩ Ŝ) and hence the observables when central galaxies
are stacked by stellar mass alone. First note that the distribution
P (M|M∗ ∩ Ŝ) is related to P (M∗|M ∩ Ŝ) such that

P (M|M∗ ∩ Ŝ) = P (M∗ ∩ Ŝ|M) P (M)

P (M∗ ∩ Ŝ)
. (26)

The distribution P (M∗ ∩ Ŝ|M) can be expressed in terms of
P(M∗|M ∩ R) and P(M∗|M ∩ B) as follows:

P (M∗ ∩ Ŝ|M) = P (M∗ ∩ R ∩ Ŝ|M) + P (M∗ ∩ B ∩ Ŝ|M)

= fR(M) S(M∗, R) P (M∗|M ∩ R)

+ fB (M) S(M∗, B) P (M∗|M ∩ B). (27)

Similar to equation (18), we parametrize P(M∗|M ∩ C) as a log-
normal distribution with mean log M̃∗(C, M) and a scatter σlog M∗
which depends on colour but is independent of halo mass. The rela-
tion M̃∗(C,M) is described using equation (19), but with L replaced
by M∗, and we assume that the scatters σlog M∗ (R) and σlog M∗ (B) are
independent of halo mass. For fR(M) and 〈Ns〉(M) we adopt the
same parametrizations as before (i.e. equations 20 and 21). Hence,
our model for the analysis of the MSR also contains 14 free parame-
ters, which we constrain using the observables obtained by stacking
central galaxies by stellar mass and colour.

3.4 Constraining the model parameters

We now describe our method to constrain the model parameters.
Here we focus on the analysis of the MLR, but note that the analysis
of the MSR is basically the same. We have measurements of the
satellite-weighted velocity dispersion, the host-weighted velocity
dispersion and the average number of satellites per central, for 10
different luminosity bins, and for each of the three samples LA, LR
and LB. In addition, we have 10 measurements of the fraction of
red centrals as a function of luminosity. Since most of the centrals
in sample LA are present in either sample LR or sample LB, the
velocity dispersions and average number of satellites measured from
sample LA are not independent of those obtained using samples LR
and LB. Therefore, we do not use these measurements from sample
LA to constrain the model parameters. This leaves a total of 70
independent data points to constrain our 14 model parameters.

We use flat uninformative priors on each of the model param-
eters (albeit in a limited interval for each of the parameters). We
use a Monte Carlo Markov chain (hereafter MCMC) technique to
sample from the posterior probability distribution of each of these
parameters given the observational constraints. The MCMC is a
chain of models, each consisting of the 14 parameters. At any point
in the chain, a trial model is generated with the 14 free parameters

drawn from a 14-dimensional Gaussian proposal distribution which
is centred on the current values of the parameters. The chi-squared
statistic, χ 2

try, for this trial model, is calculated using

χ 2
try =

∑
C=R,B

[
χ 2

sw(C) + χ 2
hw(C) + χ 2

ns(C)
] + χ 2

fr , (28)

where

χ 2
sw(C) =

10∑
i=1

[
σsw(Q[i]) − σ̂sw(Q[i])

�σ̂sw(Q[i])

]2

, (29)

χ 2
hw(C) =

10∑
i=1

[
σhw(Q[i]) − σ̂hw(Q[i])

�σ̂hw(Q[i])

]2

, (30)

χ 2
ns(C) =

10∑
i=1

[
〈Ns〉(Q[i]) − N̂s(Q[i])

�N̂s(Q[i])

]2

, (31)

χ 2
fr =

10∑
i=1

[
fR(L) − f̂R(L[i])

�f̂R(L[i])

]2

. (32)

Here Q ≡ L ∩ C, X̂ denotes the observable X and �X̂ its corre-
sponding error. The trial step is accepted with a probability given
by

Paccept =
{

1.0, if χ 2
try ≤ χ 2

cur

exp
[−(χ 2

try − χ 2
cur)/2

]
, if χ 2

try > χ 2
cur,

(33)

where χ 2
cur denotes the χ 2 for the current model in the chain.

We initialize the chain from a random position in our 14-
dimensional parameter space and discard the first 20 000 models
(the ‘burn-in’ period) allowing the chain to sample from a more
probable part of the distribution. We proceed and construct a chain
consisting of 40 million models. We thin this chain by a factor of
103 to remove the correlations between neighbouring models. This
leaves us with a chain of 40 000 independent models that sample
the posterior distribution. We use this chain of models to estimate
the confidence levels on the parameters and the relations of interest,
namely the mean and the scatter of the scaling relation between halo
mass and the central galaxy property under consideration.

4 R ESULTS

4.1 The halo mass–luminosity relation

The analysis of the MLR of central galaxies is carried out by analyz-
ing Samples LA, LR and LB (see Table 1 for the selection criteria
and the numbers of centrals and satellites in each of these samples).
The host-weighted velocity dispersion, the satellite-weighted ve-
locity dispersion and the average number of satellites as a function
of the luminosity of the central galaxies obtained from Samples LR
are shown as open squares in panels (a), (b) and (c) of Fig. 1, re-
spectively. In the same figure, panels (d), (e) and (f) show the corre-
sponding observables obtained from Sample LB. At fixed luminos-
ity, the velocity dispersion of satellite galaxies around red centrals
are systematically larger than the velocity dispersions around blue
centrals. The same is also true for the average number of satellites.
The fraction of red centrals as a function of luminosity obtained
from Sample LA are shown in panel (g). The data in these seven
panels are used to constrain the 14 parameters of our model that
describe the halo occupation statistics of red and blue centrals, and
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Figure 1. Observables used to constrain the MLR of central galaxies (open squares with error bars). The upper and middle panels show the observables
measured using red centrals (Sample LR) and blue centrals (Sample LB), respectively. From the left to the right these panels show the host-weighted velocity
dispersions [panels (a) and (d)], the satellite-weighted velocity dispersions [panels (b) and (e)] and the average number of satellites per central [panels (c) and
(f)], all as a function of the luminosity of the central. Panel (g) shows the fraction of red centrals as a function of luminosity as measured from Sample LA. The
dark and the faint blue regions indicate the 68 and 95 per cent confidence intervals obtained from the MCMC, showing that the model accurately fits the data.

the satellite occupation numbers in haloes that host red and blue
centrals. The dark and faint blue shaded regions indicate the 68 and
95 per cent confidence levels obtained from our MCMC. A com-
parison with the data reveals that the model accurately reproduces
the data.

Fig. 2 shows the velocity dispersions and the average number of
satellites as a function of luminosity around all centrals obtained
from Sample LA. As for samples LR and LB, the model is in
excellent agreement with the data (open squares), even though these
data were not directly used to constrain the model.

Figure 2. Observables measured using Sample LA. Panels (a), (b) and (c) shows the host-weighted velocity dispersions, the satellite-weighted velocity
dispersions and the average number of satellites per central, respectively, all as a function of the luminosity of the central galaxy. Although these observables
are not used to constrain the model parameters (see text), the 68 and 95 per cent confidence intervals obtained from the MCMC, indicated by the dark and faint
blue regions, show that the model accurately fits these data as well.
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Table 2. MLR: percentiles of the posterior distributions.

Parameter 16 per cent 50 per cent 84 per cent Best fit

Red log (L0) 9.63 9.86 10.17 9.99
centrals log (M1) 11.14 11.47 11.83 11.50

γ 1 2.45 3.43 4.49 4.88
γ 2 0.28 0.36 0.42 0.31

σ log L 0.18 0.21 0.23 0.20

Blue log (L0) 9.08 9.36 9.64 9.55
centrals log (M1) 10.09 10.32 10.68 10.55

γ 1 2.27 3.02 4.18 2.13
γ 2 0.30 0.41 0.52 0.34

σ log L 0.15 0.21 0.26 0.24

All f 0 0.59 0.65 0.71 0.70
centrals αf 0.14 0.20 0.25 0.15

log N12 −0.92 −0.81 −0.70 −0.78
α 1.20 1.29 1.39 1.28

The 16, 50 and 84 percentile values of the posterior distributions for the
parameters and the best-fitting parameters of our model obtained from the
MCMC analysis of the velocity dispersion data from Samples LR, LB and
LA. The best-fitting model has a reduced χ2 = 0.88.

The 16, 50 and 84 percentile values of the posterior distribution
for our model parameters obtained from our analysis are listed
in Table 2. The constraints on our model ingredients are presented
pictorially in Fig. 3. Panels (a) and (d) show the constraints obtained
on log L̃(M) for red and blue centrals, respectively, while panels (b)
and (e) show the corresponding posterior distributions of the scatter
in luminosities at fixed halo masses. Panel (c) shows the average
number of satellite galaxies as a function of halo mass, and panel
(f) shows the fraction of red centrals as a function of halo mass. At
the bright end, the mean luminosity of red central galaxies scales

with halo mass as L ∝ M0.36+0.06
−0.08 while that of blue central galaxies

scales as L ∝ M0.41+0.11
−0.11 . At the faint end, the constraints on the

faint-end slope of the log L̃(M) relation are entirely dominated by
the prior γ 1 ∈ [2.0, 5.0]. This is due to the magnitude limit of the
SDSS, which is not sufficiently faint to reliably probe the occupation
statistics of dark matter haloes with M � 1012h−1 M� (but see Yang,
Mo & van den Bosch 2009). For the scatter in P(L|M) we obtain
that σlog L = 0.21+0.02

−0.03 for red centrals and σlog L = 0.21+0.05
−0.06 for

blue centrals. Note that the scatter for blue centrals is less well
constrained than for red centrals, which is due to the smaller sample
size (see Table 1).

The slope of the relation 〈Ns〉(M) that we obtain is α = 1.29 ±
0.10. We admit that the slope we obtain is on the higher side than
what is found in the literature (Zehavi et al. 2005; Zheng, Coil &
Zehavi 2007; Yang, Mo & van den Bosch 2008), but it is consistent
with the slopes obtained by these studies within 3σ . We have ex-
perimented by assuming priors on the value of α from the results of
Yang et al. (2008). In this case, the data still seem to prefer larger
values of α and the fits get worse.

Fig. 4 shows the average halo mass and the scatter in halo masses
obtained from our analysis for red centrals (left-hand panels), blue
centrals (middle panels) and all centrals (right-hand panels) as a
function of luminosity. As expected, brighter galaxies reside on
average in more massive haloes. Note that the scatter in halo masses
around all centrals appears somewhat higher than that around either
red or blue centrals. This indicates that some fraction of this scatter
is due to the fact that red and blue centrals of the same luminosity
reside, on average, in haloes of different mass (see below). However,
red and blue centrals separately still reveal a significant amount of
scatter in their halo masses, whereby the scatter around red centrals
increases with luminosity, while that around blue centrals shows no
clear luminosity dependence.

The left-hand panel of Fig. 5 summarizes these results. It com-
pares the MLR of red centrals (triangles) to that of blue centrals
(circles) and to that of all centrals (squares). At fixed luminosity,

Figure 3. Constraints on the model ingredients obtained from the MCMC. The 68 and 95 per cent confidence intervals are indicated as dark and faint blue
regions, respectively. Panel (a) shows the average luminosity of red centrals as a function of halo mass, while panel (b) shows the posterior distribution of the
scatter σ log L in this relation. Panels (d) and (e) show the same but for blue centrals. Panel (c) shows the constraints on the average number of satellites as a
function of halo mass, and finally, panel (f) shows the constraints on the fraction of red centrals as a function of halo mass.
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Figure 4. Constraints on the MLR obtained from the MCMC. The average halo masses as a function of the luminosity of red centrals, blue centrals and all
centrals are shown in panels (a), (b) and (c), respectively. Panels (d), (e) and (f) show the confidence intervals on the scatter in these relations. As in the previous
figures, dark and faint blue colours indicate the 68 and 95 per cent confidence intervals.

Figure 5. Comparison between the average MLR (left-hand panel) and the average MSR (right-hand panel) of all centrals (squares), red centrals (triangles)
and blue centrals (circles). Error bars indicate the 68 per cent confidence intervals. See text for discussion.

red centrals on average reside in more massive haloes than blue
centrals. As expected, the MLR of all centrals lies in between that
of red and blue centrals. As the fraction of red centrals steadily
increases to unity at the bright end, the average halo mass of all
centrals shifts from tracing the MLR of blue centrals to tracing the
MLR of red centrals.

4.2 The halo mass–stellar mass relation

The analysis of the MSR of central galaxies is carried out by
analysing Samples SA, SR and SB (see Table 1 for the selec-
tion criteria and the numbers of centrals and satellites in each of
these samples). The host-weighted velocity dispersion, the satellite-
weighted velocity dispersion and the average number of satellites as

a function of the stellar mass of the central galaxies obtained from
Samples SR are shown as open squares in panels (a), (b) and (c) of
Fig. 6, respectively. In the same figure, panels (d), (e) and (f) show
the corresponding observables obtained from Sample SB. At fixed
stellar mass, the velocity dispersion of satellite galaxies around red
centrals is systematically larger than that around blue centrals. The
same is also true for the average number of satellites. The fraction of
red centrals as a function of stellar mass obtained from Sample SA
is shown in panel (g). The sharp drop of f r to zero at the low stellar
mass end is due to our use of a volume-limited sample complete
in luminosity, which causes the sample selection function for red
centrals to go to zero at the low-mass end (see Appendix A). The
data in these seven panels are used to constrain the 14 parameters of
our model. The dark and faint blue shaded regions indicate the 68
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Figure 6. Same as Fig. 1, but as a function of the stellar mass of the centrals, based on samples SR, SB and SA.

Figure 7. Same as Fig. 2, but as a function of the stellar mass of the centrals, based on sample SA. As for Fig. 2, these observables are not used to constrain
the model parameters.

and 95 per cent confidence levels obtained from our MCMC. As in
the case of the MLR, the model accurately fits the data, also in the
case of sample SA, which is not used to constrain the model (see
Fig. 7). The 16, 50 and 84 percentile values of our model parameters
obtained from our analysis are listed in Table 3.

Fig. 8 is the same as Fig. 3, except that it shows the constraints
on the MSR, rather than the MLR. At the massive end, the average

stellar mass of red centrals scales with halo mass as M∗ ∝ M0.33+0.12
−0.14

while for blue centrals we find that M∗ ∝ M0.99+0.32
−0.51 . For the scatter

in P(M∗|M) we obtain that σlog M∗ = 0.17+0.04
−0.03 for red centrals and

σlog M∗ = 0.15+0.11
−0.08 for blue centrals. The posterior distribution of

σlog M∗ for blue centrals has a long tail extending to large values of
scatter. At the low end, the confidence levels for σlog M∗ are largely
dominated by our prior (σlog M∗ > 0.04), which has been adopted
for computational convenience. Hence, we cannot rule out that the
data are consistent with zero scatter (i.e. σlog M∗ = 0.0) for blue
centrals stacked by stellar mass.

In Fig. 9 we present the average halo mass and the scatter in
halo masses obtained from our analysis for red centrals (left-hand
panels), blue centrals (middle panels) and all centrals (right-hand
panels) as a function of stellar mass. Note that the scatter in halo
masses increases with stellar mass for the red centrals, while it is
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Table 3. MSR: percentiles of the posterior distribution.

Parameter 16 per cent 50 per cent 84 per cent Best fit

Red log (M∗0) 10.15 10.58 10.93 10.84
centrals log (M1) 11.46 11.94 12.30 12.18

γ 1 2.41 3.39 4.48 3.34
γ 2 0.19 0.33 0.45 0.22

σlog M∗ 0.14 0.17 0.21 0.15

Blue log (M∗0) 8.35 9.42 10.71 9.38
centrals log (M1) 10.56 11.29 11.99 11.32

γ 1 2.30 3.19 4.36 2.41
γ 2 0.48 0.99 1.31 1.12

σlog M∗ 0.07 0.15 0.26 0.12

All f 0 0.38 0.46 0.57 0.56
centrals αf 0.44 0.62 0.78 0.46

log N12 −0.91 −0.78 −0.68 −0.71
α 1.15 1.24 1.34 1.17

The 16, 50 and 84 percentile values of the posterior distributions for the
parameters and the best-fitting parameters of our model obtained from the
MCMC analysis of the velocity dispersion data from Samples SR, SB and
SA. The best-fitting model has a reduced χ2 = 0.53.

roughly independent of stellar mass for blue centrals. In the right-
hand panel of Fig. 5 we compare the MSR of red centrals (triangles)
to that of blue centrals (circles) and to that of all centrals (squares).
At M∗ � 1010.5 h−2 M�, the average halo mass of red centrals is
virtually identical to that of blue centrals, certainly within the error
bars. At larger stellar masses, red centrals reside on average in more
massive haloes than blue centrals. In contrast, at fixed luminosity
(see left-hand panel), the average halo mass of red centrals is always
systematically larger that that of blue centrals, by more than a factor
of 3. Hence, we conclude that stellar mass is a better indicator of
halo mass than luminosity, especially at the low-mass end. However,

we also stress that there still is a significant amount of scatter in the
relation between the stellar mass of a central galaxy and the mass
of the halo in which it resides.

Finally, recall that we have assumed that the number of satellites
in a given halo, 〈Ns〉M , is independent of the colour of its central.
In order to test the possible implications of this assumption, we
have repeated the above analysis allowing for independent 〈Ns〉M

for haloes with red and blue centrals (each parametrized with equa-
tion 21). This adds an additional two free parameters to the model,
bringing the total to 16. We find that the resulting constraints are
perfectly consistent with 〈Ns〉M being identical for red and blue
centrals, and that all other constraints are similar to what we pre-
sented above. Hence, we conclude that our assumption that 〈Ns〉M

is independent of the colour of its central is supported by the data
and does not bias our results.

4.3 Comparison with other studies

It is interesting and important to compare our constraints on the
MLR and MSR of central galaxies to those obtained using differ-
ent, independent data sets and methods, including galaxy group
catalogues, galaxy–galaxy lensing, galaxy clustering, halo abun-
dance matching and other studies of satellite kinematics. In order
to enable a fair and meaningful comparison, whenever required we
have adapted the results in the literature to match the definitions of
halo mass and stellar mass used in this paper. In particular, we fol-
low Hu & Kravtsov (2003) to convert between different definitions
of halo mass and use the results of Bell et al. (2003) and Borch et al.
(2006) to convert stellar masses to the Kroupa (2001) initial mass
function adopted here.

Yang et al. (2007) studied galaxy groups in the SDSS, to which
they assigned halo masses based upon either the total stellar mass
or the total luminosity content of each group. We use their group

Figure 8. Constraints on the model ingredients obtained from the MCMC The 68 and 95 per cent confidence intervals are indicated as dark and faint blue
regions, respectively. Panel (a) shows the average stellar mass of red centrals as a function of halo mass, while panel (b) shows the posterior distribution of the
scatter σlog M∗ in this relation. Panels (d) and (e) show the same but for blue centrals. Panel (c) shows the constraints on the average number of satellites as a
function of halo mass, and finally, panel (f) shows the constraints on the fraction of red centrals as a function of halo mass.
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Figure 9. Same as Fig. 4, but for the MSR, rather than the MLR.

catalogue to investigate the MLR and MSR of central galaxies, with
and without the split in red and blue by colour. The solid and dashed
lines in Figs 10 and 11 correspond to the MLR and MSR of central
galaxies in their group catalogue, where the halo masses have been
assigned using the total stellar mass and total luminosity content of
the groups, respectively.

Mandelbaum et al. (2006) measured the galaxy–galaxy lensing
signal in the SDSS for galaxies stacked by luminosity and by stellar
mass. The galaxies were split into early and late types based upon
their morphology. Here we make the crude assumption that this is
equivalent to our split in red and blue; although clearly an over-
simplification, we do not believe that this invalidates a comparison
with our results. Modelling their data, they obtained the MLR and
MSR indicated in Figs 10 and 11 by open squares with error bars.
The same exercise was repeated in Mandelbaum et al. (2008), but
by stacking isolated galaxies. The results of this analysis are shown
as filled squares with error bars (95 per cent) in Fig. 11. In the same
figure, we also show the galaxy–galaxy lensing results of Schulz
et al. (2009) as hexagons with error bars (95 per cent).

The abundance and clustering of galaxies hold important infor-
mation regarding the halo occupation statistics of these galaxies.
Using the observed luminosity function and clustering properties of
galaxies in the SDSS, Cacciato et al. (2009) constrained the con-
ditional luminosity function, �(L|M), which describes the average
number of galaxies of luminosity L that reside in a halo of mass
M (Yang et al. 2003). We use their best-fitting parameters to calcu-
late the MLR of central galaxies and show it using open circles5 in
the top left-hand panel of Fig. 10. Note that Cacciato et al. (2009)
have also shown that their halo occupation model is able to repro-

5 Cacciato et al. (2009) also used results from the group catalogue of Yang
et al. (2007) to constrain their model, which explains why (i) their error bars
are extremely small and (ii) their results are in perfect agreement with those
of Yang et al. (2007).

duce the galaxy–galaxy lensing signal obtained by stacking central
galaxies based upon their luminosities.

The relation between galaxy stellar mass and halo mass can also
be obtained by matching the abundance of galaxies to the abun-
dance of haloes and subhaloes that host these galaxies (e.g. Conroy,
Wechsler & Kravtsov 2006; Shankar et al. 2006; Conroy et al. 2009;
Guo et al. 2010; Moster et al. 2010; Behroozi et al. 2010). The re-
sults from this (sub)halo abundance matching technique are often
quoted as the mean of the distributions P(log M∗|M). We asked
the respective authors to provide us log〈M〉(M∗) to enable a fair
comparison. In the top left panel of Fig. 11 we show the results of
Moster et al. (2010, dotted line), Guo et al. (2010, dot–long-dashed
line) and Behroozi et al. (2010, dot–dashed line).

Finally, using data from the SDSS and the DEEP2 survey, Conroy
et al. (2007) used the kinematics of satellite galaxies to determine
the evolution of the stellar mass-to-light ratio of central galaxies
from z ∼ 1 to z ∼ 0. They measured and modelled the radial
dependence of the velocity dispersion (in contrast to the aperture
averaged velocity dispersions used in this paper) to infer the average
halo mass as a function of the stellar mass of the central galaxy. The
halo mass–stellar mass relation for all central galaxies thus obtained
from their analysis at z ∼ 0 is shown in Fig. 11 using circles with
error bars.

In all panels of Figs 10 and 11, the shaded areas show the 95 per
cent confidence intervals obtained in this paper using the kinematics
of satellite galaxies. Overall, the results obtained using all these very
different methods are in remarkably good agreement with each other
(see also Behroozi et al. 2010; Dutton et al. 2010), and with the
results obtained here. However, there also are a few discrepancies,
which we discuss below.

With regard to the MLR, the galaxy group catalogues of Yang
et al. (2007) and the galaxy–galaxy lensing analysis of Mandel-
baum et al. (2006) yield halo masses around red centrals that are
in good agreement with each other. But at L ∼ 1010 h−2 L�, the
halo masses inferred from these two methods are roughly a factor
2 lower compared to the results obtained here. The three methods,
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Figure 10. Comparison of our MLR constraints with other constraints from the literature. The shaded regions show the 95 per cent confidence intervals that
we obtained from the analysis of satellite kinematics. The circles show the MLR obtained by Cacciato et al. (2009) by using galaxy abundance and clustering
measurements (the corresponding 95 per cent confident intervals are smaller than the circles), the squares with error bars (95 per cent confidence intervals)
show the MLR obtained by Mandelbaum et al. (2006) using weak lensing. The solid and dashed lines show the MLR obtained from the group catalogue of
Yang et al. (2007).

however, agree fairly well at the bright end. Somewhat surprisingly,
the MLR of all centrals (upper left-hand panel of Fig. 10) does not
reveal any discrepancy between the masses inferred from satellite
kinematics, versus those inferred from either clustering (results of
Cacciato et al. 2009) or galaxy group catalogues (results of Yang
et al. 2007). In case of the MSR of red centrals, at the low stellar
mass end the group catalogue results agree with the weak lensing
results and are again a factor 2–3 lower than the results obtained
here. On the other hand, at the bright end, our results agree fairly
well with the weak lensing results while the group catalogue results
are roughly larger by a factor of 1.6. It is also worth noting that
the weak lensing results are not fully consistent with each other at
the intermediate and low-mass ends. In particular, our results are
in excellent agreement with the weak lensing analysis of Schulz
et al. (2009) and the low-mass point of Mandelbaum et al. (2008).
For the MSR of all centrals (upper left-hand panel of Fig. 11),
our analysis of satellite kinematics once again yields halo masses
around low-mass centrals that are ∼0.3 dex larger than those in-
ferred using either subhalo abundance matching or galaxy group
catalogues. It is noteworthy, though, that the results obtained by
Conroy et al. (2007), which are also based on satellite kinematics,
are actually in good agreement with our results. Finally, we note
that for blue centrals there is no clear indication of any systematic
discrepancy, except perhaps at the massive end. However, since the
massive (bright) end of the galaxy mass (luminosity) function is

dominated by red centrals, the corresponding number statistics are
poor resulting in large error bars. Consequently, we do not consider
this discrepancy significant.

To summarize, Figs 10 and 11 indicate that tremendous progress
has been made in recent years in constraining the galaxy–dark mat-
ter connection, with different techniques yielding MLRs and MSRs
that are in fairly good agreement with each other, typically within
a factor of 2. While it is difficult to make any robust statement
about possible systematics, we acknowledge that there is a hint that
satellite kinematics yields halo masses around low-mass centrals
that are systematically larger than most other methods, especially
around red centrals. Although we certainly can’t rule out any sys-
tematics in the other methods, we briefly discuss a potential problem
with satellite kinematics.

Recently, Skibba et al. (2010) analyzed the SDSS galaxy group
catalogue of Yang et al. (2007) and showed that in a significant
fraction of groups (ranging from ∼25 per cent at the low-mass end
to ∼40 per cent at the massive end) the brightest group member
is a satellite galaxy rather than a central. As discussed at length
in their paper, this could cause satellite kinematics to overestimate
halo masses by as much as a factor of ∼1.6. However, we consider
it unlikely that this explains the systematic offset between satellite
kinematics and other methods because of the following two reasons.
First of all, the effect is expected to be largest at the massive end, and
to be negligible at the low-mass end, opposite to the trends seen in
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Figure 11. Comparison of our MSR constraints with other constraints from the literature. The shaded regions show the 95 per cent confidence intervals that we
obtained from the analysis of satellite kinematics. The circles with error bars (68 per cent confidence intervals) show the MSR obtained by Conroy et al. (2007)
using satellite kinematics. The open squares, the solid squares and the hexagons with error bars (95 per cent confidence intervals) show the MSR obtained by
Mandelbaum et al. (2006), Mandelbaum et al. (2008) and Schulz et al. (2009), respectively, using weak lensing. The solid and dashed lines show the MSR
obtained from the group catalogue of Yang et al. (2007). The (magenta) dotted line, the (red) dot–dashed line and the (cyan) dot–long-dashed line show the
results from abundance matching studies from Moster et al. (2010), Behroozi, Conroy & Wechsler (2010) and Guo et al. (2010), respectively.

Figs 10 and 11. Secondly, the factor ∼1.6 overestimate only occurs
if the probability PBNC(M) that the brightest (most massive) galaxy
in a halo of mass M is not the central galaxy is independent of the
luminosity (stellar mass) of the central galaxy. However, if haloes
of mass M in which the central galaxy is fainter (less massive) than
the average for haloes of that mass are more prone to having a
brighter (more massive) satellite, which does not seem unreason-
able, then the effect can be much weaker (see Skibba et al. 2010, for
details).

To investigate the possibility that our results for red centrals at
the low stellar mass end are affected by haloes in which the central
galaxy is not the most massive, we perform the following test. We
take all hosts from Sample SR that have stellar masses in a bin
of width 0.17 dex centred around log (M∗/h−2 M�) = 10.39. For
each host, we determine the ratio, R12, of its stellar mass to that of
its most massive satellite. Under the assumption that a larger R12

implies a larger probability that this host is a true central, we proceed
as follows. We sort the hosts in decreasing order of R12, and create
five samples by discarding the final 10, 20, 30, 40 and 50 per cent
of the hosts (plus their satellites), respectively. For each of these
samples we compute the satellite-weighted velocity dispersion of
the remaining satellites, which we plot in Fig. 12 as a function of
the minimum value of R12. Clearly, within the error bars there is no
indication for a systematic trend between σ sw and Rmin

12 . Although

Figure 12. The ratio of the satellite-weighted velocity dispersion, σ sw,
measured around hosts that have R12 (the ratio of their own stellar mass
to that of their most massive satellite) greater than or equal to Rmin

12 , to the
ratio of the satellite-weighted velocity dispersion measured around all hosts
(σ 0

sw).

this does not rule out that our satellite kinematics are affected by
the possibility that a certain fraction of our host galaxies in reality
are satellites rather than centrals, it certainly makes it less likely.

5 SU M M A RY

We have used the kinematics of satellite galaxies in order to probe
the halo mass–luminosity relation (MLR) and the halo mass–stellar
mass relation (MSR) of central galaxies. For this purpose, an
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iterative selection criterion was first applied to select central and
satellite galaxies from a volume-limited subsample of the SDSS.
The resulting sample consist of ∼6000 satellites around ∼3700
centrals, making it the largest volume-limited sample of central-
satellite pairs used to date for studies of satellite kinematics. Since
the number of satellite galaxies around any individual central galaxy
is small, a stacking procedure was used to combine the velocity
information of the satellite galaxies of centrals with similar lumi-
nosities or stellar masses. A detailed modelling procedure, outlined
in Paper I, was then used to infer both the average scaling relation
between halo mass and the central galaxy property and its scatter.

As expected, and in qualitative agreement with many other stud-
ies, we find that more luminous (more massive) centrals reside in
more massive haloes. In addition, we find that the MLR of central
galaxies is different for central galaxies of different colour: red cen-
trals, on average, occupy more massive haloes than blue centrals
of the same luminosity. Consequently, the scatter in the MLR of
central galaxies is at least partly correlated with the colour of the
central galaxy.

When stacking central galaxies according to their stellar masses,
we find the difference in the mean MSRs of red and blue centrals
to be less pronounced than in the case of the MLR. In particular,
for M∗ � 1010.5 h−2 M�, the average halo masses of red and blue
centrals are not significantly different. We thus conclude that the
stellar mass of a central galaxy is a more reliable indicator of its
halo mass than its (r-band) luminosity. However, even the MSR has
a significant amount of scatter of the order of ∼0.2 dex in stellar
mass at fixed halo mass. This translates into a scatter in halo mass
at fixed stellar mass that increases from ∼0.1 dex at M∗ � 4 ×
109 h−2 M� to ∼0.4 dex at M∗ � 2 × 1011 h−2 M�.

We compared our constraints on the MLR and MSR of cen-
tral galaxies with a number of other, independent constraints com-
ing from the SDSS galaxy group catalogue of Yang et al. (2007);
the galaxy–galaxy lensing analyses of Mandelbaum et al. (2006),
Mandelbaum et al. (2008) and Schulz et al. (2009); the galaxy
clustering analysis of Cacciato et al. (2009); subhalo abundance
matching studies of Moster et al. (2010), Guo et al. (2010) and
Behroozi et al. (2010); and the analysis of satellite kinematics by
Conroy et al. (2007). Overall, there is good agreement among all
these different studies, with a typical study-to-study scatter of less
than a factor 2, which is comparable to the typical 2σ errors quoted
by most of these studies. There is some indication, though, that satel-
lite kinematics yield halo masses around low-mass centrals (M∗ �
3 × 1010 h−2 M�) that are systematically higher by a factor of 2–3
that most other methods, although we emphasize that our results
are in perfect agreement with the galaxy–galaxy lensing analysis of
Schulz et al. (2009). As discussed in the text, we do not believe that
our results are significantly affected by the fact that not all central
galaxies are the brightest (or most massive) galaxies in their dark
matter haloes, as shown by Skibba et al. (2010). In fact, detailed
tests with mock galaxy redshift surveys, presented in Paper II, have
revealed no systematic effects for our method of analysis.

We conclude that the overall level of agreement regarding the
MLR and MSR among all different techniques indicates that we are
converging on an accurate and reliable description of the galaxy–
dark matter connection (see also van den Bosch et al. 2007; Behroozi
et al. 2010; Dutton et al. 2010). In addition to an overall agreement
regarding the means of the MSR and MLR, to well within a factor
of 2, there is also good agreement regarding the amount of scatter;
as demonstrated in Paper II, the scatter of ∼0.2 dex in luminosity
or stellar mass at fixed halo mass is in excellent agreement with
independent constraints obtained by Yang et al. (2008), Cacciato

et al. (2009) and Cooray (2006), and with predictions from the
semi-analytical model for galaxy formation of Croton et al. (2006).
This overall level of agreement is an admirable achievement, which
will prove invaluable not only for furthering our understanding of
galaxy formation, but also for using galaxies to probe the cosmic
density field and to constrain cosmological parameters.
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R. C., Szalay A. S., 2004, ApJ, 600, 681
Becker M. R. et al., 2007, ApJ, 669, 905
Behroozi P. S., Conroy C., Wechsler R. H., 2010, ApJ, 717, 379
Bell E. F., McIntosh D. H., Katz N., Weinberg M. D., 2003, ApJS, 149, 289
Blanton M. R. et al., 2003a, ApJ, 592, 819
Blanton M. R. et al., 2003b, AJ, 125, 2348
Blanton M. R. et al., 2005, AJ, 129, 2562
Borch A. et al., 2006, A&A, 453, 869
Brainerd T. G., Specian M. A., 2003, ApJ, 593, L7
Brown M. J. I. et al., 2008, ApJ, 682, 937
Cacciato M., van den Bosch F. C., More S., Li R., Mo H. J., Yang X., 2009,

MNRAS, 394, 929
Carlberg R. G., Yee H. K. C., Ellingson E., Abraham R., Gravel P., Morris

S., Pritchet C. J., 1996, ApJ, 462, 32
Carlberg R. G., Yee H. K. C., Ellingson E., 1997, ApJ, 478, 462
Collister A. A., Lahav O., 2005, MNRAS, 361, 415
Conroy C., Wechsler R. H., 2009, ApJ, 696, 620
Conroy C. et al., 2005, ApJ, 635, 982
Conroy C., Wechsler R. H., Kravtsov A. V., 2006, ApJ, 647, 201
Conroy C. et al., 2007, ApJ, 654, 153
Cooray A., 2006, MNRAS, 365, 842
Croton D. J. et al., 2006, MNRAS, 365, 11
Dai X., Kochanek C. S., Morgan N. D., 2007, ApJ, 658, 917
Dutton A. A., Conroy C., van den Bosch F. C., Prada F., More S., 2010,

MNRAS, 407, 2
Erickson L. K., Gottesman S. T., Hunter J. H., Jr, 1987, Nat, 325, 779
Gavazzi R., Treu T., Rhodes J. D., Koopmans L. V. E., Bolton A. S., Burles

S., Massey R. J., Moustakas L. A., 2007, ApJ, 667, 176
Guo Q., White S., Li C., Boylan-Kolchin M., 2010, MNRAS, 404, 1111
Hu W., Kravtsov A. V., 2003, ApJ, 584, 702
Komatsu E. et al., 2010, preprint (arXiv:1001.4538)
Kravtsov A. V., Berlind A. A., Wechsler R. H., Klypin A. A., Gottlöber S.,
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APPENDI X A : SAMPLE SELECTI ON
F U N C T I O N

Here we illustrate how our use of a volume-limited sample of galax-
ies, complete in luminosity, leads to a sample that is incomplete in
stellar mass. Our aim is to characterize the sample selection func-
tion, S(M∗ , C), which describes the fraction of galaxies of stellar
mass M∗ and colour C that make it into our sample. This sample se-
lection function is required for modelling the satellite kinematics as
a function of the stellar mass of their host galaxy (see Section 3.3.2)

The left-hand panel of Fig. A1 shows the distribution of galaxies
in the 0.1r-band luminosity–redshift plane. Red and blue galaxies
are indicated by red and blue dots, respectively. The apparent mag-
nitude limit, mlim

r = 17.77, of the spectroscopic sample results in
an absolute magnitude limit given by

0.1M lim
r − 5 log h = 17.77 − DM(z) − k0.1(z)

+ 1.62 (z − 0.1) . (A1)

Here k0.1(z) is the k-correction to redshift z = 0.1, 1.62 is the evo-
lution correction factor from Blanton et al. (2003a) and DM(z) is
given by

DM(z) = 5 log DL(z) + 25.0 , (A2)

where DL(z) is the luminosity distance of the galaxy in h−1Mpc. The
redshift dependence of the k-corrections is fairly well reproduced
by (van den Bosch et al. 2008)

k0.1(z) = 2.5 log

(
z + 0.9

1.1

)
. (A3)

The above equations yield the solid black line in the left-hand panel
of Fig. A1. Note that a very small fraction of galaxies fall below
this predicted limit. This is because the k-correction also depends
on the colour of the central galaxy which we have not accounted

Figure A1. The left panel shows the distribution of SDSS galaxies in the luminosity-redshift plane. Red and blue galaxies are indicated by red and blue dots,
respectively. The volume-limited sample of galaxies used for our analysis of satellite kinematics is enclosed by the dashed lines. The right-hand panel shows
the distribution of galaxies in this volume-limited sample in the stellar mass-redshift plane.
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for. However, this effect can safely be ignored for the purpose of
this paper.

Galaxies with z ≤ 0.071 and 0.1Lr ≥ 109.5 (i.e. 0.1M lim
r −5 log h ≤

−18.99) make up the volume-limited sample used in this paper
(indicated by dashed lines in the left-hand panel of Fig. A1). The
right-hand panel of Fig. A1 shows the distribution of galaxies in this
volume-limited sample in the stellar mass–redshift plane. Note that
the sharp cut in luminosity translates into a colour-dependent cut
in stellar mass; bluer galaxies have a lower cut-off in stellar mass,
causing the low-mass end of the sample to be completely dominated
by blue galaxies.

We remind the reader that in our analysis, galaxies were assigned
stellar masses using the 0.0(g − r) colour and the 0.0r-band magnitude
using equation (1). The 0.1r-band magnitude limit we have used for
our volume-limited sample translates into a 0.0r-band limit given by

0.0M lim
r = 0.1M lim

r + [k0.1(z) − k0.0(z)] − 0.162 , (A4)

where the term in square brackets is the difference in k-corrections
between redshift 0.0 and 0.1, and the last term is the difference in
the evolution corrections between these redshifts. The k-corrections
to redshift 0.0 can be reasonably well described by (van den Bosch
et al. 2008)

k0.0(z) = 2.5 log(1 + z) + 1.5 z [0.0(g − r) − 0.66]. (A5)

Combining equations (A4), (A5), (A3) with equation (1) gives that,
at fixed 0.0(g − r) colour, the stellar mass limit in the volume-limited
sample varies with 0.0(g − r) and redshift as

log(M lim
∗ ) = 8.9812 − log

[
z + 0.9

1.1 (1 + z)

]
− 0.396 z + (1.097 + 0.6 z )0.0(g − r). (A6)

In Fig. A2, we plot the distribution of galaxies in the colour–
stellar mass diagram. The colour cut which was used to assign
colours to our sample of galaxies is shown by the black solid line
(see equation 1). The green dashed line show the limit expressed
in equation (A6) assuming z = 0.071. At fixed stellar mass, only a
fraction of galaxies (those that lie below the green line) are part of
the volume-limited sample. More than half of the red galaxies drop
out of the sample at stellar masses below 109.8 h−2 M�.

Figure A2. The colour–stellar mass diagram of galaxies in our volume-
limited sample. The black solid line shows the boundary that we use to split
the galaxy population in ‘red’ and ‘blue’ galaxies. The green dashed line
shows the analytical prediction (equation A6) for the selection effect that
results due to our use of a volume-limited sample complete in luminosity.
The resulting selection functions, S(C, M∗), for red and blue galaxies are
indicated by the (red) dashed and (blue) dot–dashed lines, respectively.

To calculate the selection function S(M∗, C), we use the entire
flux limited catalogue of galaxies to populate the 0.0(g − r)–stellar
mass plane, this time assigning to each galaxy a weight equal to
1 over the maximum volume to which this galaxy could be seen
given the r-band flux limit of 17.77. Using small bins in stellar
mass, we calculate S(M∗, C) in each bin by dividing the sum of
weights of galaxies of a particular colour that lie below log(M lim

∗ )
with the sum of weights of all galaxies of that colour in the bin
under consideration. The resulting selection functions for red and
blue galaxies are plotted in Fig. A2 as red long-dashed and blue
dot–dashed lines, respectively.
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