Research paper assignment

- Review of research that interests you, more focused than discussions in class
- Include references and figures
- Final format should be PDF (try LaTeX!)
- Concise! < 5000 words
- Steps:
 - Write down specific questions that interest you and send them to us by March 21st (next week)
 - On approval, search the literature (resources on webpage)
 - Refine outline, write paper first draft due April 25th
 - After paper is reviewed, revise and submit final draft by May 16

Full information on webpage: http://web.mit.edu/8.972/www

Lecture 6: Interiors of Brown Dwarfs and Exoplanets

Pliī

What is the state of matter inside a brown dwarf/exoplanet?

What determines the minimum mass for H fusion?

How does the interior state relate to the gross physical properties of brown dwarfs/exoplanets?

How do we model the evolution of a brown dwarf/exoplanet?

How do we check our interior models through observation?

	5 Myr BD	5 Gyr BD	5 Gyr Jupiter
Mass (M _☉)	0.05	0.05	0.001
Radius (R _☉)	0.6	0.09	0.11
<mark>g (cm/s²)</mark>	6x10 ³	2x10⁵	3x10 ³
ρ _c (g/cm³)	4	600	3
P _c (Mbar)	50	10 ⁵	10
Т _с (°К)	10 ⁶	10 ⁶	1.5x10 ⁴
ρ _{ph} (g/cm³)	3x10 ⁻⁶	10-4	6x10⁻ ⁶
P _{ph} (bar)	0.1	4	1
T _{eff} (°K)	3000	800	125
L (L _☉)	3x10 ⁻²	3x10 ⁻⁶	10-9

- 1417

Phir

The state of Hydrogen

Phir

Bulk of substellar interior is...

- **Ionized H & He** via pressure ionization ($\rho > 1$ g/cc)
- Partially degenerate electron gas:

$$\eta \equiv \frac{kT_F}{kT} = \frac{1}{T} \frac{\hbar^2}{2m_e} \left(3\pi^2 \frac{\rho}{\mu_e m_p} \right)^{\frac{2}{3}} \approx 3 \times 10^5 \frac{\rho^{2/3}}{T} \approx 10$$

Strongly coupled plasma due to coulomb forces

$$\Gamma \equiv \frac{Z^2 e^2}{r_s kT} \approx 2.3 \times 10^5 \rho^{1/3} T^{-1} \approx 1$$

 Fully convective - radiative opacity (primarily election scattering) is high for T > 10⁴ K

Polytrope models

Kippenhahn & Weigert (1930s) See Hansen & Kawaler "Stellar Interiors"

$$\frac{dP}{dr} = -\frac{GM(r)\rho}{r^2}$$
$$\frac{dM(r)}{dr} = 4\pi r^2 \rho$$

Hydrostatic equilibrium

Continuity equation

$$\Rightarrow \frac{1}{r^2} \frac{d}{dr} \left(\frac{r^2}{\rho} \frac{dP}{dr} \right) = -4\pi G \rho$$

Poisson's equation

Plii

Polytrope models

$$P = K \rho^{1 + \frac{1}{n}}$$

Equation of state (EOS)

Then, with some algebraic manipulation...

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) = -\theta^n \quad \text{Lane-Emden equation}$$
With $\rho(r) = \rho_c \theta^n(r)$ and $r = \xi \sqrt{\frac{(1+n)P_c}{4\pi G \rho_c^2}}$

l'lii

What is best polytrope?

 $P = K \rho^{1+\frac{1}{n}}$ n = 1.5 - adiabatic ideal gas & degenerate gas n = 1.0 - strongly coupled degenerate gas (appropriate for low mass, old brown dwarfs)

Scalings
for n=1.5
$$\rho_c \approx 6\langle \rho \rangle \propto M^2$$
$$P_c \approx 0.77 \frac{GM^2}{R^4} \propto M^{10/3}$$
$$R \approx 2.4 \frac{K}{G} M^{-1/3} \propto M^{-1/3}$$

- Phii

What sets the mass of a brown dwarf?

The maximum core temperature as a function of mass can be determined by an appropriate polytrope model (e.g., Stevenson 1991) and must exceed the threshold for H fusion for a star.

Kumar (1962, 1963); see also Hayashi & Nakano (1963)

Phir

Critical temperatures for fusion

- I'liī

Evolution of a Brown Dwarf

Adiabatic P/ ρ profile \Rightarrow entropy (S) and degeneracy (η) are constant throughout interior*

Evolution is dictated by decreasing S and increasing $\boldsymbol{\eta}$

Entropy (energy content) lost $\left(-\frac{dS}{dt}\int TdM\right)$ through radiation at photosphere (L = $4\pi R^2 \sigma T_e^4$) assuming entropy constant up to base of photosphere (S_{interior} = S_{atm})

*Neglecting any phase transitions or a conductive core

Pliī

Models from Burrows et al. (1997)

Models from Burrows et al. (1997)

How do planetary interiors differ?

- Lower masses \Rightarrow lower P, T, ρ ; different EOS?
- Irradiance of host star can affect evolution (hot Jupiters)
- Higher abundances of "metals"
 ⇒ rock, ice, heavy metals more
 abundant
- More complex structure
- Presence of (solid) core(s)

How do we test interior models?

For Brown Dwarfs:

Orbital Motion in Binaries with known ages and distances compare mass/luminosity/age relations to empirically determined masses tests evolutionary theory (1+ systems)

Gliese 569BC: Zapatero Osorio et al. (2004)

l'liī

How do we test interior models?

For Brown Dwarfs:

Orbital Motion in Binaries with known ages and distances compare mass/luminosity/age

relations to empirically determined masses tests evolutionary theory (1+ systems)

Eclipsing Binaries -

radius measurements provide direct test of structure model (1 system)

2MASS J0535–0546AB: Stassun et al. (2006)

Plii

Indirect techniques

Radius can be inferred from:

$$L_{bol} = 4\pi R^2 \sigma T_{eff}^4$$

Mass can be inferred from:

⇒ Mass/radius relations can be (roughly) tested

How do we test interior models?

For Planets:

Transiting planets provide radius (transit depth) and mass (radial velocities) to test structure models

The "Super-Neptune" HD 149026b

Stellar Irradiation

Energy deposited into the upper atmosphere by the host star changes its atmospheric T/P profile and creates a **deep upper radiative zone**.

Planet cannot release heat/entropy as effectively, unable to evolve in same manner as isolated planetary mass objects

l'liī

Do Jupiter/Saturn have cores?

A core of 10-20 M_{\oplus} is predicted by **core accretion models** (Pollack et al. 1996), while other mechanisms (e.g., **disk fragmentation**; Boss 2000) do not require them.

For solar planets we can search for evidence of cores using the observed mass (M), equatorial radius (R_e), rotational period (P) **and gravitational moments (J**₂, J₄, ...) and appropriate models

Saturn: has a core

Pliī

Jupiter has no core?

For Further Thought

- 1. How do we improve our understanding of the EOS in the interiors of planets and brown dwarfs?
- 2. How can make better empirical constraints on BD structure models?
- 3. Can we determine whether exoplanets have cores?
- 4. What other parameters might have an effect on the structure of a BD/planet (e.g., metallicity, magnetic fields, rotation)
- 5. What is the thermal evolution of a hot rotating Jupiter?

