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SF recipes

• Cen & Ostriker (1992)                       
Eulerian hydro simulation

• Springel & Hernquist (2003):                     
SPH (smoothed particle hydrodynamics),                 
subparticle multiphase ISM model -- extention of 
Yepes et al. (1997)

Two basic models:



Cen & Ostriker (1992)

• 4 criteria for a cell to be star-forming:

1.  

2.  

3.  

4.

(overdense)

(contracting)

(cooling fast)

(Jeans unstable)

then,

if



Springel & Hernquist (2003)

cold gas

subparticle multiphase ISM model
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Figure 3. Star formation rate per unit area versus gas surface density in a
self-consistent simulation of a disc galaxy that quiescently forms stars. The
symbols show azimuthally averaged measurements obtained for our fiducial
choice of t!0 = 2.1 Gyr. The dashed inclined line gives the Kennicutt law
of equation (25), and the vertical line marks the observed cut-off of star
formation.

slope of the Schmidt law. Interestingly, the cut-off induced by the
best-fitting value of t!

0 also lies approximately in the right location.
It is presently unclear whether this has any profound significance,
or whether it is just a fortunate coincidence in the present simple
model. Recall that the cut-off in the model is induced by an imposed
physical density threshold ρ th for the onset of cloud formation, and
that this density is tied to the value for the star formation time-scale.

Finally, we examine how well full three-dimensional (3D) simu-
lations of spiral galaxies obey the Kennicutt law that we used to set
the star formation time-scale. In Fig. 3, we show azimuthally aver-
aged measurements obtained for our fiducial choice of t!

0 = 2.1 Gyr
in a compound galaxy consisting of a dark halo, and a star-forming
gaseous disc. There is good agreement with the corresponding an-
alytic curve in Fig. 2, validating the numerical implementation of
the multiphase model in our simulation code.

4 W I N D S A N D S TA R BU R S T S

4.1 Winds

As summarized above, our multiphase model leads to the establish-
ment of a physically motivated and numerically well-controlled reg-
ulation cycle for star formation in gas that has cooled and collapsed
to high baryonic overdensities. Gas contained in dark matter haloes
can thus cool and settle into rotationally supported discs where the
baryons are gradually converted into stars, at a rate consistent with
observations of local disc galaxies. In this model, the thickness and
the star formation rates of gaseous discs are regulated by supernova
feedback, which essentially provides finite pressure support to the
star-forming ISM, thereby preventing it from collapsing gravita-
tionally to exceedingly high densities, and also allowing gaseous
discs to form that are reasonably stable against axisymmetric
perturbations.

However, it is clear that the model we have outlined so far will
not be able to account for the rich phenomenology associated with

starbursts and galactic outflows, which are observed at both low
(e.g. Bland-Hawthorn 1995; Heckman et al. 1995, 2000; Lehnert &
Heckman 1996; Dahlem et al. 1997) and high redshifts (e.g. Pettini
et al. 2000, 2001; Frye, Broadhurst & Benitez 2002). This is because
our multiphase model by itself offers no obvious route for baryons to
climb out of galactic potential wells after having collapsed into them
as a result of cooling. Note that for the hybrid model of quiescent
star formation we explicitly assume that the cold clouds and the hot
surrounding medium remain tightly coupled at all times. The high
entropy gas of supernova remnants is thus trapped in potential wells
by being tied into a rapid cycle of cloud formation and evaporation.
In principle, tidal stripping of enriched gas in galaxy interactions
(Gnedin & Ostriker 1997) could lead to a transport of enriched gas
back into the low-density IGM. However, high-resolution simula-
tions of galaxy collisions (Barnes 1988; Barnes & Hernquist 1992;
Hernquist 1992, 1993) have shown that such dynamical removal of
gas from the inner regions of galaxies appears to be rather ineffi-
cient, especially for the deep potential wells expected for haloes in
CDM universes (Springel & White 1999).

On the other hand, it is becoming increasingly clear that galac-
tic winds and outflows may play a crucial role not only in chem-
ically enriching and possibly heating the IGM (Nath & Trentham
1997; Aguirre et al. 2001a,b,c; Madau, Ferrara & Rees 2001), in
polluting the IGM with dust (Aguirre 1999a,b), and in enriching
the intracluster and intragroup medium, but may also be an im-
portant mechanism in regulating star formation on galactic scales
(Scannapieco, Ferrara & Broadhurst 2000; Scannapieco &
Broadhurst 2001a,b). Since winds can reheat and transport collapsed
material from the centre of a galaxy back to its extended dark matter
halo and even beyond, they can help to reduce the overall cosmic star
formation rate to a level consistent with observational constraints.
Because radiative cooling is very efficient at high redshifts and in
small haloes (White & Rees 1978; White & Frenk 1991), numer-
ical simulations of galaxy formation typically either overproduce
stars compared with the luminosity density of the Universe, or har-
bour too much cold gas in galaxies. The self-regulated model we
present above will also suffer from this problem, because it does not
drastically alter the total amount of gas that cools. It is plausible,
however, that galactic winds may solve this ‘overcooling’ problem,
provided that they can expel sufficient quantities of gas from the cen-
tres of low-mass galaxies. Removal of such low-angular momentum
material may also help to resolve the problem of disc sizes being
too small in CDM theories (Navarro & White 1994b; Navarro &
Steinmetz 2000; Binney, Gerhard & Silk 2001). Note that semi-
analytic models of galaxy formation must also invoke feedback pro-
cesses that reheat cold gas and return to the extended galactic halo
or eject it altogether.

We are thus motivated to extend our feedback model to account
for galactic winds driven by star formation. Winds have been in-
vestigated in a number of theoretical studies (Mac Low & Ferrara
1999; Efstathiou 2000; Aguirre et al. 2001a,b,c; Madau et al. 2001;
Scannapieco et al. 2001 among others), but the mechanism by which
galactic outflows originate is not yet well understood. In the star-
forming multiphase medium, it is plausible that not all of the hot
gas in supernova remnants will remain confined to the disc by being
quickly used up to evaporate cold clouds. Instead, supernova bub-
bles close to the surface of a star-forming region may break out of a
disc and vent their hot gas into galactic haloes. As a result, a galactic-
scale wind associated with star formation may develop. Note that
this process does not necessarily require a prominent starburst, but
could be a common phenomenon even with quiescent star formation
(Efstathiou 2000). In the latter case, winds may often not be strong
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• Cen, KN & Ostriker ‘05

• Springel & Hernquist  ‘03
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Fig. 5.— Projected metallicity of a slice of size 11 × 11h−2Mpc2 comoving and a depth of

2.75h−1Mpc comoving at redshift z = 3 for a WMAP-normalized ΛCDM model with (left

panel) and without (right) GSW, respectively. The strength of the GSW is normalized to

LBG observations. This is the same slice as in Figure 1.

observed metallicity? Are there palpable signatures of GSW on Lyα forest? Figure 5 shows

the spatial distribution of metallicity in the IGM with (left panel) and without (right panel)

GSW. It is visible from Figures 5 that, while other, gravitational (e.g., Gnedin 1998) and

hydrodynamic processes do transport metals to the vicinity (≤∼ 100kpc) of galaxies without

GSW (right panel of Figure 5), GSW appear to play a more important role to transport

the metals from galaxies to larger distances, in conjunction with other, gravitational and

non-gravitational processes. The “metal bubbles” (reddish bubbles seen in the left panel of

Figure 5) have ρmetals/ρgas ∼ 10−4, indicating that these metal-contaminated regions are

enriched to a metallicity close to 10−2 Z".

Figure 6 shows the metallicity as a function of Lyα cloud column density for our

fiducial run (Run 1: N432L11M) with two yield schemes. For the clouds within the range

of column densities (NHI ∼ 1014 − 1015cm−2), where comparisons with observations can

– 15 –

Fig. 1.— Projected temperature of a slice of size 11 × 11h−2Mpc2 comoving and a depth

of 2.75h−1Mpc comoving at redshift z = 3 with (left panel) and without (right) GSW,

respectively. The strength of the GSW is normalized to LBG observations.

in filaments. A joint examination of Figures 1,2 indicates that GSW prefer to travel in the

directions roughly perpendicular to the filaments, as found by Theuns et al. (2002).

To further demonstrate that GSW do not significantly alter the flux distribution of

the Lyα forest, Figure 3 shows the probability distributions of transmitted flux fraction,

defined as F ≡ exp(−τ), for the seven runs tabulated in Table 1. The fact that all the

runs, except Runs 5 (N864L22M) and 7 (N432L11M32), nearly overlay with one another

clearly shows that the effect of GSW on flux distribution and other derived quantities

(such as column density distribution, etc.,) will remain relatively unaltered, retaining the

previous good agreement found between simulations and observations. The fact that the

higher resolution run (Run 4: N864L11M) agrees with lower resolution runs (Runs 1,2,3:

N432L11M, N432L11L, N432L11H) suggests that our fiducial run (Run 1: N432L11M) has

adequate resolution. The deviation of Run 5 (N864L22M) from the rest is due to cosmic

variance, while the deviation of Run 7 (N432L11M32) from the rest is a result of missing
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number of interesting properties of this scheme, which is physically
better motivated than most of the models currently employed in
cosmological SPH simulations. Because of this, we will base our
analysis in part on their approach and on a first implementation of
it in SPH by Hultman & Pharasyn (1999), yet we will significantly
extend and modify the model. Our specific aim is to formulate a de-
scription of feedback that is physically motivated, numerically well
specified, and suitable for simulating galaxy formation within large
cosmological volumes. In what follows, we show that our model
leads to self-regulation of star formation, and describe how it can
be normalized by analysing its properties. Under the assumption
that the normalization obtained from observations of disc galax-
ies in the present Universe holds at all redshifts, we find that the
resulting cosmic star history leads to an overprediction of the lumi-
nosity density of the Universe. We then argue that galactic winds
are a plausible mechanism for eliminating this discrepancy, and they
simultaneously help to account for other observational data, such
as the metals found in the low-density intergalactic medium (IGM),
and describe a phenomenological strategy for including these winds
in cosmological simulations.

This paper is organized as follows. In Section 2, we summarize
our new hybrid multiphase model for quiescent star formation in
detail, and analyse some of its basic properties. In Section 3, we
discuss physical and observational constraints on the values of the
model parameters. In Section 4, we extend the model by including
galactic winds. We then describe our numerical implementation of
the method in a parallel TREESPH code for cosmic structure formation
in Section 5. We present numerical results for the formation of disc
galaxies in isolation, and for small simulations of cosmic structure
formation in Section 6. Finally, we give conclusions in Section 7.

2 A M U LT I P H A S E M O D E L F O R QU I E S C E N T
S TA R F O R M AT I O N

We term our treatment of star formation and feedback a ‘hybrid’
method because it does not attempt to explicitly resolve the spatial
multiphase structure of the ISM on small scales, but rather makes the
assumption that crucial aspects of the global dynamical behaviour of
the ISM can be characterized by an effective ‘subresolution’ model
that uses only spatially averaged properties to describe the medium.
In essence, by adopting a statistical formulation, we seek to account
for the impact of unresolved physics on scales that are resolved.

In our hybrid approach, each SPH fluid element represents a re-
gion in the ISM, the properties of which are obtained from a suit-
able coarse-graining procedure. This is analogous to the N-body
representation of collisionless fluids, but here the structure of the
unresolved matter is more complex. In particular, we picture the
medium as a fluid comprised of condensed clouds in pressure equi-
librium with an ambient hot gas. The clouds supply the material
available for star formation. For these hybrid particles, the equa-
tions of hydrodynamics are only followed for the ambient gas. The
cold clouds are subject to gravity, add inertia and participate in mass
and energy exchange processes with the ambient gas phase. These
processes are computed on a particle-by-particle basis in terms of
simple differential equations using a specific model for the physics
of the ISM. Here, we attempt to incorporate some of the key aspects
of the theoretical picture of the ISM outlined by McKee & Ostriker
(1977).

In the following, ρh denotes the local density of the hot ambient
gas, ρc is the density of cold clouds, ρ" is the density of stars and
ρ = ρh + ρc is the total gas density. Individual molecular clouds
and stars cannot be resolved, thus ρc and ρ" represent averages over

small regions of the ISM. We implicitly assume that such a coarse-
graining procedure has been carried out, and we will formulate the
interactions between the phases assuming that the regions used to
define the averages are of constant volume. In our model, the average
thermal energy per unit volume of the gas can then be written as
ε = ρhuh + ρcuc, where uh and uc are the energy per unit mass of
the hot and cold components, respectively.

We model three basic processes that drive mass exchange between
the phases. These are star formation, cloud evaporation arising from
supernovae and cloud growth caused by cooling. We discuss these
processes in turn, focusing first on self-regulated, ‘quiescent’ star
formation. Later, we will extend the model to include additional pro-
cesses leading to the development of galactic winds. For simplicity
of presentation, we will omit adiabatic terms in the following defi-
nition of the model.

We assume that star formation converts cold clouds into stars on
a characteristic time-scale t", and that a mass fraction β of these
stars are short-lived and instantly die as supernovae. This can be
described by

dρ"

dt
= ρc

t"
− β

ρc

t"
= (1 − β)

ρc

t"
. (1)

In principle, there is a time delay between star formation events and
associated supernovae equal to the approximate lifetime of massive
stars (∼3 × 107 yr). However, for the quiescent mode of star for-
mation, self-regulation is established so quickly that this time delay
can be neglected.

Star formation therefore depletes the reservoir of cold clouds at
the rate ρc/t", and leads to an increase in the mass of the ambient
phase as βρc/t", because we assume that ejecta from supernovae are
returned as hot gas. The parameter β is the mass fraction of massive
stars (>8 M$) formed for each initial population of stars and hence
depends on the adopted stellar initial mass function. For a Salpeter
IMF Salpeter (1955) with slope −1.35 and upper and lower limits
of 40 and 0.1 M$, respectively, it has the value β = 0.106. We will
typically adopt β = 0.1, and note that our results are not particularly
sensitive to this choice.

In addition to returning gas (enriched with metals) to the am-
bient phase of the ISM, supernovae also release energy. The pre-
cise amount of this energy depends on the IMF. For the canoni-
cal value of 1051 erg supernova−1, we expect an average return of
εSN = 4 × 1048erg M−1

$ for each solar mass in stars formed for
the IMF adopted here. The heating rate arising from supernovae is
hence

d
dt

(ρhuh)

∣

∣

∣

∣

SN

= εSN
dρ"

dt
= βuSN

ρc

t"
, (2)

where uSN ≡ (1 − β)β−1εSN may be expressed in terms of an equiv-
alent ‘supernova temperature’ T SN = 2 µuSN/(3k) & 108 K.

In our formulation, we assume that the feedback energy from
supernovae directly heats the ambient hot phase. In addition, we
suppose that cold clouds are evaporated inside the hot bubbles of
exploding supernovae, essentially by thermal conduction, thereby
returning material from condensed clouds to the ambient gas. We
take the total mass of clouds that are evaporated to be proportional
to the mass in supernovae themselves, namely

dρc

dt

∣

∣

∣

∣

EV

= Aβ
ρc

t"
. (3)

The efficiency A of the evaporation process is expected to be a func-
tion of the local environment. For simplicity, we will only take the
expected theoretical dependence on density, A ∝ ρ−4/5, into account
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A further interesting consequence of our feedback model is that
it leads to self-regulated star formation. Owing to evaporation, star
formation reduces the density in cold clouds, lowering the star for-
mation rate. On the other hand, a higher density of hot gas leads to
an increase in the cooling rate, and hence to more rapid replenish-
ing of clouds, increasing the star formation rate. In this manner, a
self-regulated cycle of star formation is established where, in equi-
librium, the growth of clouds is balanced by their evaporation arising
from supernova feedback.

This condition can be seen in more detail by considering equat-
ion (7). In the self-regulated regime, we expect the effective pressure
of the medium

Peff = (γ − 1)(ρhuh + ρcuc) (13)

to be constant in time. This condition implies

ρc

t#
= $net(ρh, uh)

βuSN − (1 − β)uc
. (14)

Using $net(ρh, uh) = (ρh/ρ)2 $net(ρ, uh), we thus obtain an expres-
sion for the expected ratio of masses in the cold and hot phases,
namely
ρc

ρh
= ρh

ρ
y, (15)

where we have defined

y ≡ t#$net(ρ, uh)
ρ [βuSN − (1 − β)uc]

. (16)

Note that y is a function only of ρ in the self-regulated regime,
provided that t# and A depend only on density. We can then express
the mass fraction

x ≡ ρc

ρ
(17)

of cold clouds as

x = 1 + 1
2y

−
√

1
y

+ 1
4y2

. (18)

The effective pressure of the gas will then take on the value

Peff = (γ − 1)ρ [(1 − x)uh + xuc] , (19)

where the term in square brackets is the effective mass-weighted
‘temperature’ ueff of the medium.

In Fig. 1, we show the density dependence of this effective tem-
perature, and of the temperatures of the hot and cold components in
our multiphase model of the ISM. Also shown is the mass fraction
of gas in cold clouds, and the local logarithmic slope neff of the
effective equation of state Peff(ρ) of the star-forming medium. It is
clear that the functional dependence of Peff on density is particularly
important for the dynamical stability of star-forming regions. For
neff > 4

3 , the effective pressure can provide enough vertical thick-
ening to stabilize gaseous discs against rapid break up into clumps
as a result of dynamical instabilities.

3 S E L E C T I N G PA R A M E T E R S

Following McKee & Ostriker (1977), we express the density depen-
dence of the supernova evaporation parameter A as

A(ρ) = A0

(

ρ

ρth

)−4/5

, (20)

where ρ th and A0 are parameters of our model. To specify the star
formation time-scale, t#, we make the common assumption that
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Figure 1. The top panel shows the temperature structure of the multiphase
medium as a function of baryonic overdensity (assuming &b = 0.04). Below
a density of δ # 8 × 105, star formation does not occur and the gas is treated
as a single-phase fluid, with a temperature that is maintained close to 104 K
by cooling and UV heating. When star formation sets in, a hot ambient
medium develops (thin solid line), and cold clouds are present at a fiducial
temperature of 103 K (dashed). The mass-weighted effective temperature
(thick solid line) is continuous at the onset of star formation, and can be
interpreted in terms of an effective pressure Peff. In the middle panel, we
plot the local polytropic index neff = d log Peff/d log ρ of the resulting
effective equation of state. The bottom panel shows the mass fraction in cold
clouds as a function of overdensity.

this quantity is proportional to the local dynamical time of the gas.
This plausible choice results in a Schmidt-type law for the depen-
dence of the star formation rate on density, as observed. We thus
set
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t!(ρ) = t!
0

(

ρ

ρth

)−1/2

, (21)

where t!
0 is an additional parameter of the model.

Before we study the properties of our model in detail, we discuss
how its free parameters can be constrained. So far, we have intro-
duced two parameters that depend on the IMF, β and uSN, and three
parameters that determine the regulation of the multiphase medium
as a result of star formation; these are ρ th, A0 and t!

0.
For the purposes of this work, we neglect uncertainties in the IMF

and treat β and uSN as known constants. However, the other three
parameters are crucially important to the behaviour of the model. We
proceed by first requiring that at the onset of thermal instability, the
equilibrium temperature of the hot medium is such that the thermal
instability in fact becomes operative. This means that the cooling
function should start to fall at this temperature, which happens at
"105 K. We thus require that

TSN/A0 = 105 K, (22)

which fixes A0 to a value of A0 " 1000.
Next, we argue that the effective pressure of the gas should be

a continuous function of density at the onset of the regime of self-
regulated star formation. The gas just below the threshold will have
cooled down to 104 K, where it becomes neutral. Further cooling
could happen only as a result of less efficient molecular cooling
processes that we ignore. (For now, we also neglect cooling because
of metals, which could, however, become significant once the gas
becomes chemically enriched from star formation.) Hence we im-
pose the condition ueff (ρ th) = u4, where u4 is the specific energy
corresponding to a temperature of 104 K. Based on the equations
for the self-regulated regime, we thus have

ρth = xth

(1 − xth)2

βuSN − (1 − β)uc

t!
0 $(uSN/A0)

, (23)

which sets the density threshold ρ th for a given a value of t!
0. Here,

x th = 1 + (A0 + 1)(uc − u4)/uSN " 1 − A0u4/uSN is the mass
fraction in clouds at the threshold, and $ is defined by $(ρ, u) =
$net (ρ, u)/ρ2, such that $ loses its dependence on density for
temperatures that are high compared with 104 K.

We have thus reduced the description of our model to one free
parameter, the star formation time-scale t!

0. It is clear that this pa-
rameter sets the overall gas consumption time-scale, which is, in
principle, well constrained by observations of the efficiency of star
formation.

Observationally, there appears to be a tight correlation between
disc-averaged measurements of the star formation rate per unit
area and the gas surface density, a ‘global Schmidt law’, given by
Kennicutt (1998) as

%SFR = (2.5 ± 0.7) × 10−4

(

%gas

M$ pc−2

)1.4±0.15
M$

yr kpc2
. (24)

This correlation is valid from typical disc-averaged gas densi-
ties of 10 M$ pc−2 in normal spirals to gas densities as high as
105 M$ pc−2 in the central regions of starbursting galaxies. Roughly
the same law also appears to hold locally for azimuthally aver-
aged gas densities and star formation rates, although perhaps with
a slightly smaller amplitude than that given by equation (24). In
addition, there is a clear threshold behaviour for star formation,
with %SFR very rapidly falling at densities below ∼10 M$ pc−2

(Kennicutt 1989, 1998; Martin & Kennicutt 2001). It has been sug-
gested that the threshold might be related to the onset of gravitational
instabilities in the disc, but presently the evidence for this argument
remains inconclusive.

By modelling individual galaxies, we will directly try to fit the
Schmidt law of equation (24), using, however, a slope of 1.5, which
prompts us to lower the normalizing coefficient in front by a factor
of 2. This correction results when changing the best-fitting slope to
1.5 and simultaneously requiring the star formation rate to remain
unchanged at the intermediate density value of 103 M$ pc−2. The
resulting local Schmidt law then provides a good fit to the azimuthal
data of 21 spirals presented in fig. 3 of Kennicutt (1998). The ob-
servational constraint we thus try to match can also be expressed as
a gas consumption time-scale, taking the form

tSFR = %gas

%SFR
= 3.2 Gyr

(

%gas

10 M$ pc−2

)−1/2

. (25)

At the threshold for the onset of star formation, this thus indicates
a time-scale of approximately 3.2 Gyr, becoming shorter towards
higher densities. This compares well with the cited median gas
consumption time-scale of 2.1 Gyr (Kennicutt 1998) and 2.4 Gyr
(Rownd & Young 1999).

In Fig. 2, we show the relation between the star formation density
and the gas surface density predicted by our multiphase model for
various choices of t!

0. The curves have been computed by solving
the equations of hydrostatic equilibrium for self-gravitating layers
of gas with varying surface density. Clearly, the amplitude of the
star formation rate is very sensitive to the value of t!

0, with t!
0 =

2.1 Gyr providing a good fit to the Kennicutt law.
Once the amplitude of star formation has been matched by adjust-

ing t!
0, the slope and the cut-off obtained can be used as additional

checks on the applicability of our model. The slope is matched quite
well, even though this is not entirely trivial because it requires that
the vertical structure which develops under the action of Peff for
the self-gravitating, star-forming sheet of gas leads to star forma-
tion rates per unit area, which are compatible with the observed
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Figure 2. The star formation rate per unit area versus gas surface density in a
star-forming disc of gas. The dashed inclined line shows the Kennicutt law of
equation (25), with the vertical line drawn to indicate the observational cut-
off in the star formation rate. The solid and dotted lines have been computed
numerically by solving the equations of hydrodynamic equilibrium together
with our multiphase model for self-gravitating sheets of gas. The solid line
shows the result for t!0 = 2.1 Gyr, the lower dotted line is obtained for t!0 =
8.4, Gyr, and the upper dotted line for t!0 = 0.53 Gyr.
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Galactic wind in SPH simulation
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Figure 16. Projected mean metallicity of the gas in a 2 × 503 simulation that includes galactic winds. The map is 11.3 h−1 Mpc on a side and shows the full
simulation box in projection at redshift z = 2.3 (left) and z = 0 (right). The mean metallicity of the gas is indicated by a logarithmic colour-scale.

limit of the simulation is thus prevented. Combined with improved
formulations of SPH (Springel & Hernquist 2002) this makes it
much easier to reach numerical convergence even under conditions
of only moderate resolution.

It will thus be interesting to study the predictions of our model
in more detail. As first steps, we have already carried out a detailed
analysis of the predictions of the model for the cosmic star formation
history in the !CDM cosmology (Springel & Hernquist 2003), and
we analysed the impact of cooling, star formation, and winds on sec-
ondary anisotropies of the cosmic microwave background (White,
Hernquist & Springel 2002). In these studies, a new comprehensive
set of simulations that included strong galactic winds was used. We
plan to extend our analysis of these simulations in future work.
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Figure 15. Mean metallicity of the gas as a function of baryonic over-
density. The three panels show results for redshifts z = 4, 2.3 and 0, both
for simulations with and without winds. We follow Aguirre et al. (2001a)
and use a shaded region to approximately indicate the range of metallicities
observed in Lyα absorption-line studies at z ! 3.

the solar metallicity. However, at redshifts higher than z > 2.3 even
gas at overdensities of 100 is well below 10−4 Z#, and thus falls
significantly short of the metallicities that are observed in the Lyα

forest at these redshifts, as indicated by the shaded region (following
Aguirre et al. 2001a). Recall that in our self-regulated model for
star formation, stars begin to form only at high physical densities,
corresponding to baryonic overdensities of approximately ∼106 at
z = 0. If winds are not included, only dynamical stripping may bring
metal-enriched gas from the ISM to the lower-density environments.

The results of Fig. 15 suggest that these processes are not efficient
enough to explain the enrichment of the IGM.

However, including winds changes the enrichment pattern sig-
nificantly, as expected. Our fiducial model enriches the IGM to an
interesting metallicity of Z ! 10−5/2 Z# for the relevant densities.
It is thus clear that a wind model such as the one discussed here can,
in principle, account for the mean metallicity of the IGM.

Note that the distribution of metals in the gas is highly inhomoge-
neous. This is seen in Fig. 16, where we show projected metallicity
maps at redshifts z = 2.3 and 0. The detailed metallicity distribu-
tion together with the inhomogeneous heating pattern arising from
the winds potentially yield signatures in the Lyα forest that may
be very constraining for the enrichment model discussed here. We
plan to address this question further in future work. Note that at low
velocities, winds will primarily be able to escape from small haloes,
pushing the epoch of enrichment of the IGM to high redshift, when
these haloes form abundantly, and when the winds can propagate
relatively far because of the small scale-size of the Universe at the
epoch of ejection.

7 D I S C U S S I O N

We have presented a new model for the treatment of star formation
and feedback in cosmological simulations of galaxy formation. Our
approach leads to the establishment of a tight self-regulation cycle
for star formation that is based on a rough, yet physically moti-
vated model of the ISM. A crucial ingredient of the model is the
assumed multiphase structure of the ISM. At high density much of
the interstellar material becomes bound in cold clouds, becoming
sites for star formation. The density of the ambient phase is lowered
accordingly, which also reduces its radiative losses and allows it
to be heated by supernovae to a temperature high enough to pro-
vide some pressure support for the ISM. The stabilizing effect of
this pressure counteracts star formation and, together with the cloud
formation/evaporation cycle, leads to self-regulation. Owing to the
nature of the approximations made, it is clear that our model is still
phenomenological to a large degree. In principle, however, the phys-
ical approximations we used can be refined in the future, thereby
improving the faithfulness of the model.

The star formation time-scale in the quiescent mode of star for-
mation can be directly determined from observations of local disc
galaxies. If this normalization is adopted, we find that cosmological
simulations nevertheless lead to an overproduction of stars. We have
invoked galactic winds as a heuristic extension of our model to rem-
edy this problem. While there is mounting observational evidence
for the existence of such winds, they are introduced in our model in a
phenomenological manner. However, winds clearly have a range of
highly interesting consequences. They reduce the global efficiency
of star formation, and this suppression is particularly strong in low-
mass haloes, thereby helping to explain the observed ‘low’ values
of the luminosity density. Winds are also capable of accounting for
the enrichment of the low-density IGM with metals, and they may
be crucial to understanding the metal distribution in the intracluster
gas of clusters of galaxies.

Another important property of our technique is that it is numeri-
cally well posed in the sense that the parameters of the model can
be determined directly based on physical arguments or observa-
tional input, and need not to be changed when the mass resolution
is varied. The use of the subresolution technique introduces a well-
specified continuum limit in the hydrodynamic equations, despite
the inclusion of cooling. Unlike in standard single-phase simula-
tions, an unphysical collapse of gas to a scale set by the resolution
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Figure 2. Projected baryonic density fields in slices through a selection of our simulations at various redshifts. In each case, the slice has a thickness equal to
one-fifth of the box size of the corresponding simulation (see Table 1). The Z4 simulation in the top left-hand corner has the highest spatial resolution, allowing
to identify the hot ‘bubbles’ in the IGM that develop as a result of impinging galactic winds. These bubbles are filled with gas with temperatures up to 106 K,
as seen in the projected mass-weighted temperature map in the top right-hand corner.
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enough to escape from all but the smallest galaxies, but they can
nevertheless represent a crucial process for transporting metals and
energy released by supernovae into the extended galactic halo.

Unfortunately, our understanding of the small-scale hydrodynam-
ics that is actually responsible for driving winds is crude, although
high-resolution simulations of starbursts (Mac Low & Ferrara 1999)
provide some clues concerning the physics. Here, we will not at-
tempt to formulate a detailed theory for the production of winds,
but will rather use a phenomenological approach that can easily
be combined with our model for star formation and feedback. To
this end, we will parametrize the winds in analogy with Aguirre
et al. (2001b), who studied wind propagation and metal enrichment
of the IGM using detailed analytic models applied to a sequence
of simulation time slices. Their phenomenological model of winds
was constructed to be physically and energetically plausible, to be
simple, and to be constrained by observational data to the extent
possible, an approach we will also follow.

We start by assuming that the disc mass-loss rate that goes into a
wind, Ṁw, is proportional to the star formation rate itself, namely

Ṁw = ηṀ", (26)

where η is a coefficient of the order of unity, and Ṁ" is the formation
rate of long-lived stars. In fact, Martin (1999) presents observational
evidence that the disc mass-loss rates of local galaxies are of the
order of the star formation rates themselves, with Ṁw/Ṁ" ∼ 1–5,
and without evidence for any dependence on galactic rotation speed.
Note that Ṁw just describes the rate at which gas is lost from a disc
and fed into a wind. Whether or not this material will be able to
escape from the halo will then depend on a number of factors: the
velocity to which the gas is accelerated, the amount of intervening
and entrained gas, and the depth of the potential well of the halo. If
the wind is slow and the halo is of sufficient mass, the gas ejected
from the disc will remain bound to the halo, and may later fall back
to the star-forming region, giving rise to a galactic ‘fountain’. On
the other hand, even a slow wind may escape dwarf galaxies and,
at sufficiently high redshift, can potentially pollute a large volume
without overly perturbing the thermal structure of the low-density
IGM. Note that for values of η above unity, a wind is expected to
greatly suppress star formation in galaxies that are of low enough
mass to allow the wind to escape. We will adopt η = 2 in our fiducial
wind model, consistent with the observations of Martin (1999).

We further assume that the wind carries a fixed fraction χ of the
supernova energy. Equating the kinetic energy in the wind with the
energy input by supernovae,

1
2

Ṁwv2
w = χεSN Ṁ", (27)

we obtain the velocity of the wind when it leaves the disc as

vw =
√

2βχuSN

η(1 − β)
. (28)

We will treat χ as a further parameter of the wind model. For sim-
plicity, we do not reduce the amount of energy available for thermal
heating of the hot phase of the multiphase medium by the amount
that is put into the wind, i.e. the total energy we inject when winds
are included effectively becomes ε ′

SN = (1 + χ )εSN. Of course, it
would also be possible to reduce the thermal heating accordingly,
such that the total injected energy remains constant. However, this
has the side-effect that then the model parameters A0 and t"

0 have to
be slightly adjusted in order to maintain the match to the Kennicutt
law, which would make it more involved to compare models with
different values of χ . Also note that for the procedure we selected

here, we can use values for χ that are of the order of unity, or even
larger. Such models can be energetically justified by alluding to the
substantial uncertainty of the value of εSN, which may well be be
a factor of 2–3 larger than the default value we adopted here. In
fact, based on observations of galactic outflows, the wind energy
is expected to be of the order of εSN, in which case it constitutes
a sizeable fraction of the overall supernova energy input. We will
assume χ = 0.25 in most of the test simulations discussed in this
paper. In principle, it should be possible to use observations of the
cosmic star formation history or the metal enrichment of the IGM to
constrain this parameter. Finally, we note that we do not explicitly
model a distribution of wind velocities in this study. Of course, some
variation of the local wind speed will be automatically produced by
the dynamics of local gas interactions.

4.2 Starbursts

We have shown that our hybrid model leads to an efficient self-
regulation of star formation, which can be understood in terms of an
effective equation of state. In general, the model is thus best viewed
as describing quiescent star formation, where the star formation
rate will in general only gradually accelerate when the gas density
is increased, in accordance with the empirical Schmidt law. The
winds we have introduced as an extension of this model will not
change this picture. We specifically postulate that a wind leaves a
star-forming region without significantly perturbing it dynamically,
and our numerical implementation of wind formation is designed to
ensure this behaviour. Winds thus merely reduce the amount of gas
available for star formation. Depending on the depth of the potential
well, the gas may or may not come back to the galactic disc at a
later time and become available for star formation again.

It is interesting to note, however, that we expect the quiescent
mode of star formation to eventually become ‘explosive’ (i.e. very
rapid) for sufficiently high gas densities. Physically, it is plausi-
ble that self-regulation should break down at high densities. In the
self-regulated regime, cold clouds are constantly being formed and
evaporated. If clouds are not replenished by cooling, they will be
consumed on a time-scale t c = t"/(β A) = (ρ/ρ th)3/10t"

0/(β A0).
This time-scale t c describes the rate at which clouds are repro-
cessed. At the onset of star formation, it is approximately a factor of
100 shorter than the star formation time-scale itself, on the order
of a few times 107 yr. However, at higher densities, clouds are re-
processed more slowly, and eventually t c will become larger than
the maximum lifetime of individual clouds, which is estimated to
be as high as 108 yr for giant molecular clouds. At this point, it will
become difficult to maintain tight self-regulation because the clouds
will not survive long enough to await evaporation. Instead they may
all collapse and form stars on the time-scale of their lifetime, i.e. the
time-scale of star formation will suddenly become shorter in this
regime and deviate from the scaling we have assumed so far.

Since it is unclear how this transition to accelerated star forma-
tion proceeds in detail, we refrain from modelling it explicitly in this
study. However, we remark that already the effective pressure model
discussed so far shows a possibility for run-away star formation, for
purely dynamical reasons. Recall that the ISM is stabilized against
gravitational collapse by the effective pressure provided in the mul-
tiphase model. For sufficiently high densities, the corresponding
equation of state eventually becomes soft. More specifically, there
is a certain overdensity, where the local polytropic index falls below
a slope of 4

3 . It is well known that barotropic gas spheres with an
index below this value are unstable. We thus expect that once we as-
semble a sufficiently large amount of cold gas, the effective pressure
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the other hand, even a slow wind may escape dwarf galaxies and,
at sufficiently high redshift, can potentially pollute a large volume
without overly perturbing the thermal structure of the low-density
IGM. Note that for values of η above unity, a wind is expected to
greatly suppress star formation in galaxies that are of low enough
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wind model, consistent with the observations of Martin (1999).

We further assume that the wind carries a fixed fraction χ of the
supernova energy. Equating the kinetic energy in the wind with the
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we obtain the velocity of the wind when it leaves the disc as
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We will treat χ as a further parameter of the wind model. For sim-
plicity, we do not reduce the amount of energy available for thermal
heating of the hot phase of the multiphase medium by the amount
that is put into the wind, i.e. the total energy we inject when winds
are included effectively becomes ε ′

SN = (1 + χ )εSN. Of course, it
would also be possible to reduce the thermal heating accordingly,
such that the total injected energy remains constant. However, this
has the side-effect that then the model parameters A0 and t"

0 have to
be slightly adjusted in order to maintain the match to the Kennicutt
law, which would make it more involved to compare models with
different values of χ . Also note that for the procedure we selected

here, we can use values for χ that are of the order of unity, or even
larger. Such models can be energetically justified by alluding to the
substantial uncertainty of the value of εSN, which may well be be
a factor of 2–3 larger than the default value we adopted here. In
fact, based on observations of galactic outflows, the wind energy
is expected to be of the order of εSN, in which case it constitutes
a sizeable fraction of the overall supernova energy input. We will
assume χ = 0.25 in most of the test simulations discussed in this
paper. In principle, it should be possible to use observations of the
cosmic star formation history or the metal enrichment of the IGM to
constrain this parameter. Finally, we note that we do not explicitly
model a distribution of wind velocities in this study. Of course, some
variation of the local wind speed will be automatically produced by
the dynamics of local gas interactions.
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We have shown that our hybrid model leads to an efficient self-
regulation of star formation, which can be understood in terms of an
effective equation of state. In general, the model is thus best viewed
as describing quiescent star formation, where the star formation
rate will in general only gradually accelerate when the gas density
is increased, in accordance with the empirical Schmidt law. The
winds we have introduced as an extension of this model will not
change this picture. We specifically postulate that a wind leaves a
star-forming region without significantly perturbing it dynamically,
and our numerical implementation of wind formation is designed to
ensure this behaviour. Winds thus merely reduce the amount of gas
available for star formation. Depending on the depth of the potential
well, the gas may or may not come back to the galactic disc at a
later time and become available for star formation again.

It is interesting to note, however, that we expect the quiescent
mode of star formation to eventually become ‘explosive’ (i.e. very
rapid) for sufficiently high gas densities. Physically, it is plausi-
ble that self-regulation should break down at high densities. In the
self-regulated regime, cold clouds are constantly being formed and
evaporated. If clouds are not replenished by cooling, they will be
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This time-scale t c describes the rate at which clouds are repro-
cessed. At the onset of star formation, it is approximately a factor of
100 shorter than the star formation time-scale itself, on the order
of a few times 107 yr. However, at higher densities, clouds are re-
processed more slowly, and eventually t c will become larger than
the maximum lifetime of individual clouds, which is estimated to
be as high as 108 yr for giant molecular clouds. At this point, it will
become difficult to maintain tight self-regulation because the clouds
will not survive long enough to await evaporation. Instead they may
all collapse and form stars on the time-scale of their lifetime, i.e. the
time-scale of star formation will suddenly become shorter in this
regime and deviate from the scaling we have assumed so far.

Since it is unclear how this transition to accelerated star forma-
tion proceeds in detail, we refrain from modelling it explicitly in this
study. However, we remark that already the effective pressure model
discussed so far shows a possibility for run-away star formation, for
purely dynamical reasons. Recall that the ISM is stabilized against
gravitational collapse by the effective pressure provided in the mul-
tiphase model. For sufficiently high densities, the corresponding
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Figure 10. Evolution of the comoving cosmic star formation rate density in all of our simulations on a common plot. Individual runs are labelled at the bottom.
It is seen that the collection of runs forms a common ‘envelope’, with each simulation of low mass-resolution eventually breaking away from the envelope at
sufficiently high redshift. A simulation may also underpredict the cosmic star formation density when its volume is too small to resolve a fair sample of the
high end of the mass spectrum of haloes expected at the given epoch. This is the case for the Z-series at ‘low’ redshifts of z < 15. At these epochs, the star
formation is dominated by the rarest massive objects, of which the Z-series does not contain a proper number. Interestingly, the common envelope formed by
the simulations is very well reproduced if we multiply our measurement for the average star formation rate in haloes of a given mass, s(M, z) = 〈Ṁ"〉/M , with
the Sheth & Tormen mass function, and integrate the resulting multiplicity function to obtain ρ̇"(z). This result is shown as the bold line, and may be viewed as
our prediction for the star formation history, corrected for incomplete sampling of the halo mass function. The dotted line shows the result of this computation
if the Press & Schechter mass function is used instead at high redshift.

In our model, the star formation rate peaks in the redshift range
z ∼ 5–6. This is substantially higher than the peak at z ∼ 1–2 sug-
gested by the early work of Madau et al. (1996), a result which,
however, was probably severely affected by dust corrections un-
known at the time. The newer high-redshift points of Steidel et al.
(1999) and Hughes et al. (1998) actually appear to be consistent
with our prediction. Also, our simulations are in good agreement
with data for the Local Universe from Gallego et al. (1995) and
Treyer et al. (1998), but not Gronwall (1999).

However, if we assume that all the data points are unbiased, our
result seems low compared with the ‘average’ at redshifts around
z ∼ 1. These high observational results at z ∼ 1 suggest a very
rapid decline of the star formation rate towards the present epoch.
For example, Hogg (2001) analysed the diverse set of available data
from the literature and estimates ρ̇" ∝ (1 + z)β with β = 3.1 ± 0.7.
Such a steep evolution was first suggested by Lilly et al. (1996),
based on an analysis of the Canada–France redshift survey. Our
model prediction clearly evolves more slowly than this estimate.

On the other hand, the more gradual decline of star formation
found by us is in better agreement with the result of Cowie et al.
(1999). Recently, this group has been able to substantially increase
their observational sample of multicolour data and spectroscopic
redshifts from the Hawaii Survey Fields and the Hubble Deep Field,
allowing a selection based on rest-frame UV up to a redshift of z =
1.5. Wilson et al. (2002) confirm a shallow evolutionary rate of (1 +
z)1.7±1.0 over this redshift range from this new data. We think our
results for the star formation history are broadly consistent with the
data, given the current level of uncertainty in the observational de-
terminations. Note that a proper treatment of metal-line cooling has
the potential to increase our star formation estimate at low redshift,
as discussed by Hernquist & Springel (2002). This could eliminate
a potential deficit of star formation at low redshift in our model if
future observational improvements confirm this suggestion of the
present data.

It is also interesting to compare our prediction with other theoret-
ical studies of the cosmic star formation history. Baugh et al. (1998)
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tion are dynamically stable enough to obtain meaningful
results for the evolution of individual galaxies.

3. GLOBAL STAR FORMATION RATE

We Ðrst present in Figure 1a the global SFR as a function
of time, from right to left. The prediction of global SFR in
the CDM model has been discussed in the literature (Baugh
et al. 1998 ; Nagamine, Cen, & Ostriker 2000 ; Somerville,

FIG. 1.È(a) SFR of the entire simulation box as a function of time, from
right to left. The dashed line is the least-squares Ðt to the decaying expo-
nential function given in Table 1, with a timescale of q \ 5.9 Gyr. (b) Same
as (a), but with SFR as a function of redshift (the Madau plot). The source
of data points are given in Nagamine et al. (2000). Here we adopted factors
of 1.3 (z \ 2) and 2.5 (z [ 2) for dust extinction correction of the observed
data points.

Primack, & Faber 2001).1 This quantity is observationally
known up to uncertainties associated with dust obscur-
ation, and the agreement with observations can be used as a
veriÐcation of the calculation. This quantity does not
receive the e†ect of the grouping procedure but gives a
measure of the efficiency of gas cooling, which depends on
the thermal balance. We also indicate a boxcar-smoothed
histogram with a 10-point running average with the dotted
curve. The dashed line is a least-squares Ðt to the exponen-
tial decay function, corresponding to a timescale of q \ 5.9
Gyr.

The same information is presented in Figure 1b, but using
a logarithmic scale for the SFR and redshift as a time scale
in accordance with the Madau plot. In this diagram the
meaning of the solid and dotted curves is reversed : the
dotted curve follows the raw data, and the solid line is the
smoothed data. The observation is corrected for dust
extinction according to the prescription of Steidel et al.
(1999) : we assume highly uncertain extinction correction
factors to be 1.3 (z \ 2) and 2.5 (z [ 2) to obtain a better Ðt,
while Steidel et al. (1999) used the higher values 2.7 (z \ 2)
and 4.7 (z [ 2). With a rather large error in the empirical
estimate of SFR, a global agreement is seen between our
calculation and the observation. We do not observe a peak
of SFR at low redshift, as often found by semianalytic mod-
elers of galaxy formation (Baugh et al. 1998 ; Somerville et
al. 2001).2 The SFR is, on average, a smooth function of
redshift and nearly levels o† at z [ 4. Note that this behav-
ior is consistent with an exponential decay of the SFR in
time. This means that the bulk of stars have formed at a
redshift higher than 2 : 25% of stars formed at z [ 3.6, and
another 25% were added between z \ 3.6 and 1.8 (by z \ 1,
68% of stars were formed). We consider our result to be
reliable up to z \ 5È6 from a mesh-e†ect consideration,
whereas that at a yet higher redshift may su†er from the
e†ect of poor resolution. Observationally, it is an unsettled
problem whether the SFR levels o† at high redshift (Steidel
et al. 1999) or still increases beyond z [ 3 (Lanzetta et al.
1999). It is an interesting observational problem to Ðnd out
how the SFR behaves at high redshifts, but this can be done
only with proper knowledge of dust extinction or with
observations that are not subject to the e†ects of extinction.
For now, it is sufficient for us to know that the calculation
of global SFR is grossly consistent with the observation.

4. STAR FORMATION HISTORY IN GALAXIES

In Figure 2, we present the star formation histories of
galaxies in the simulation divided into three samples
according to their stellar mass at z \ 0. Note that the star-
bursts at high redshift may have taken place in smaller
progenitors that later merged into a massive object that is
classiÐed in the largest mass bin. The galaxies that fall into
each mass interval are co-added in the histogram. Most of
the mass resides in large galaxies, which are represented in

1 The simulation used by Nagamine et al. (2000) assumed too high a
yield of metals (Y \ 0.06), which resulted in overproduction of stars com-
pared with the empirical estimate. In addition, the simulation mesh was
coarser and one may suspect the e†ect of low resolution above z B 4. We
consider the result presented in this paper to supersede that of Nagamine
et al. (2000).

2 In semianalytic models, one may suppress star formation at high
redshift by taking a larger SN energy feedback parameter. In general, these
models require a strong SN feedback to Ðt the faint end of the galaxy
luminosity function (see Cole et al. 2000). See Paper II for the luminosity
function in our simulation.
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Fig. 5.— Star formation rate density as a function of redshift. The curves represent the model
predictions specified in the legend. The data are taken from (from low to high redshift):

Heavens et al. (2004, 3 asterisks at z ∼ 0), Nakamura et al. (2004, open inverted triangle at
z = 0), Lilly et al. (1996, open circles), Norman et al. (2004, filled triangles), Cowie et al.

(1999, open diamonds), Gabasch et al. (2004, open squares), Reddy et al. (2005, cross at
z = 2), Barger et al. (2000, open pentagons at z = 2 and 4.5), Steidel et al. (1999, open

stars at z = 3, 4), Ouchi et al. (2004a, filled circles at z = 4, 5), Giavalisco et al. (2004, open
triangles at z = 3 − 6), and Bouwens et al. (2005, filled square at z = 6). The data are
converted to the values with the Chabrier IMF and common values are assumed for dust

extinction for the UV data. See text for details.
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Fig. 6.— Panel (a): Stellar mass density (including remnants) as a function of redshift and

age. The top axis indicates the age of the Universe. All data assume the Chabrier IMF
and h = 0.7. The source of data are given in the text. Panel (b): Growth of the stellar
mass density normalized by the value at z = 0. For the Fossil model, the bulge and disk

components are also shown separately.

– 37 –

Fig. 7.— Metal mass density as a function of redshift. The curves represent the model
predictions specified in the legend. The data are taken from (from low to high redshift):

Dunne et al. (2003, red bars at z = 0 & 2.5), Fukugita & Peebles (2004, blue cross at z = 0,
shifted for clarity), Bouché et al. (2006, magenta lower limit at z = 2, for galaxies), and

Prochaska et al. (2006, black lower limit at z = 2, shifted for clarity. Only for damped Lyα
systems and super Lyman Limit systems).

– 39 –

Fig. 9.— EBL as a function of redshift for the models shown in the legend. The observa-

tionally allowed range at z = 0, equation (9), is indicated by the error bar.
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Figure 8. Star formation histories of selected galaxies in the
‘G6’-run with the bin-size of 10 Myrs. Galaxy ID, stellar mass in
units of h−1M", rest-frame V -band magnitude, and apparent R

magnitude for E(B − V ) = 0.15 are indicated in each panel for
the corresponding galaxy.

it is very likely that these measurements underestimate the
true rotation curves (M. Pettini, private communication),
casting some doubt on these claims. To settle this issue, we
have to wait for the detection of a definite flattening of the
rotation curves, which might become possible in the near fu-
ture with near-IR spectrographs coupled to adaptive optics
systems. Another difficulty with the low-mass starbursting-
galaxy picture for LBGs is that such systems would be ex-
pected to have relatively low chemical abundances, whereas
at least the brighter LBGs have near-solar metallicity.

The luminosity functions we measure for our simulated
LBG galaxies are characterised by a steep faint end, with a
slope close to α ∼ −2. This is the slope of the dark mat-
ter halo mass function, so in our simulations, the galaxy
luminosity function seems to largely follow the halo mass
function at the low-mass end. Observationally, we know
that at z = 0 the faint-end slope of galaxies is certainly
much shallower than this, with a slope of order α ∼ −1.2
(Blanton et al. 2001). At high-redshift, the faint-end of the
galaxy luminosity function is not nearly as well constrained,
however, and may be much steeper. In fact, Shapley et al.
(2001) report a slope of α = −1.85 for LBG galaxies at
z = 3 which is still consistent with our simulations. How-
ever, as the authors explain, this should be taken with some
caution because their observations only reach an absolute
V -band magnitude of −20.5, which is not deep enough to
constrain the faint-end slope reliably. If confirmed, a steep
luminosity function at z # 3 would in any case have to
evolve into a much flatter one at low redshift. Whether such
a scenario is viable or not will be tested by current and fu-
ture very deep surveys, such as DEEP2 (Davis et al. 2002;
Madgewick et al. 2003; Coil et al. 2003).

Barring confirmation of a rapid evolution of the faint-
end slope, our results therefore hint that the simulations
still overproduce the number of low-mass galaxies, despite
the inclusion of strong feedback processes that are capable of
accounting for the observed brightness of L!-galaxies. The
moderating effects of feedback on star formation do depend
on galaxy mass in the physical model followed by the simula-
tions in the sense that, for a given amount of star formation,
the feedback by winds does comparatively more damage for
small mass galaxies. This is because towards smaller galaxy
mass scales, the winds find it easier to escape from their
confining galactic potential wells. The winds also entrain
more gas in the outflow for lower circular velocities, so that
the net baryonic loss becomes larger towards smaller mass
scales, making the total mass-to-light ratio of smaller halos
in principle bigger. But, this variation of the feedback effi-
ciency with galaxy mass may not be strong enough in the
present set of simulations to close the significant gap be-
tween the faint-end slopes of halo mass function and galaxy
luminosity function.

Interestingly, the studies by Chiu, Gnedin & Ostriker
(2001); Nagamine et al. (2001), and Nagamine (2002) based
on Eulerian hydrodynamic simulations did find a flatter
faint-end slope (see also Harford & Gnedin 2003). Presently
it is unclear whether this was due to resolution limitations
in the low-mass end of the halo mass function, or due to
genuine physical effects of the feedback model implemented
in these Eulerian simulations. More work in the future will
be needed to settle this very interesting question, which is
of tremendous importance for the theoretical framework of
hierarchical galaxy formation in CDM universes.

ACKNOWLEDGEMENTS

We thank Kurt Adelberger for providing us with the Un,
G, R filter response functions and the data points in Fig-
ure 7, and Max Pettini for useful comments. We also thank
Antonella Maselli for refereeing our paper and valuable com-
ments which improved the manuscript. This work was sup-
ported in part by NSF grants ACI 96-19019, AST 00-71019,
AST 02-06299, and AST 03-07690, and NASA ATP grants
NAG5-12140, NAG5-13292, and NAG5-13381. The simula-
tions were performed at the Center for Parallel Astrophys-
ical Computing at the Harvard-Smithsonian Center for As-
trophysics.

REFERENCES

Adelberger K. L., Steidel C. C., Shapley A. E., Pettini M.,
2003, ApJ, 584, 45

Adelberger K. L. & Steidel C. C., 2000, ApJ, 544, 218
Adelberger K. L., Steidel C. C., Giavalisco M., Dickinson
M., Pettini M., Kellogg M., 1998, ApJ, 505, 18

Aguirre A., Hernquist L., Schaye J., Weinberg D., Katz N.,
Gardner J., 2001a, ApJ, 560, 599

Aguirre A., Hernquist L., Schaye J., Katz N., Weinberg D.,
Gardner J., 2001b, ApJ, 561, 521

Baugh C. M., Cole S., Frenk C. S., Lacey C. G., 1998, ApJ,
498, 504

Becker R. H., et al., 2001, AJ, 122, 2850

c© 2003 RAS, MNRAS 000, 1–12

Photometric Properties of Lyman-break Galaxies at z = 3 in Cosmological SPH Simulations 11

Figure 8. Star formation histories of selected galaxies in the
‘G6’-run with the bin-size of 10 Myrs. Galaxy ID, stellar mass in
units of h−1M", rest-frame V -band magnitude, and apparent R

magnitude for E(B − V ) = 0.15 are indicated in each panel for
the corresponding galaxy.

it is very likely that these measurements underestimate the
true rotation curves (M. Pettini, private communication),
casting some doubt on these claims. To settle this issue, we
have to wait for the detection of a definite flattening of the
rotation curves, which might become possible in the near fu-
ture with near-IR spectrographs coupled to adaptive optics
systems. Another difficulty with the low-mass starbursting-
galaxy picture for LBGs is that such systems would be ex-
pected to have relatively low chemical abundances, whereas
at least the brighter LBGs have near-solar metallicity.

The luminosity functions we measure for our simulated
LBG galaxies are characterised by a steep faint end, with a
slope close to α ∼ −2. This is the slope of the dark mat-
ter halo mass function, so in our simulations, the galaxy
luminosity function seems to largely follow the halo mass
function at the low-mass end. Observationally, we know
that at z = 0 the faint-end slope of galaxies is certainly
much shallower than this, with a slope of order α ∼ −1.2
(Blanton et al. 2001). At high-redshift, the faint-end of the
galaxy luminosity function is not nearly as well constrained,
however, and may be much steeper. In fact, Shapley et al.
(2001) report a slope of α = −1.85 for LBG galaxies at
z = 3 which is still consistent with our simulations. How-
ever, as the authors explain, this should be taken with some
caution because their observations only reach an absolute
V -band magnitude of −20.5, which is not deep enough to
constrain the faint-end slope reliably. If confirmed, a steep
luminosity function at z # 3 would in any case have to
evolve into a much flatter one at low redshift. Whether such
a scenario is viable or not will be tested by current and fu-
ture very deep surveys, such as DEEP2 (Davis et al. 2002;
Madgewick et al. 2003; Coil et al. 2003).

Barring confirmation of a rapid evolution of the faint-
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the inclusion of strong feedback processes that are capable of
accounting for the observed brightness of L!-galaxies. The
moderating effects of feedback on star formation do depend
on galaxy mass in the physical model followed by the simula-
tions in the sense that, for a given amount of star formation,
the feedback by winds does comparatively more damage for
small mass galaxies. This is because towards smaller galaxy
mass scales, the winds find it easier to escape from their
confining galactic potential wells. The winds also entrain
more gas in the outflow for lower circular velocities, so that
the net baryonic loss becomes larger towards smaller mass
scales, making the total mass-to-light ratio of smaller halos
in principle bigger. But, this variation of the feedback effi-
ciency with galaxy mass may not be strong enough in the
present set of simulations to close the significant gap be-
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on Eulerian hydrodynamic simulations did find a flatter
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it is unclear whether this was due to resolution limitations
in the low-mass end of the halo mass function, or due to
genuine physical effects of the feedback model implemented
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be needed to settle this very interesting question, which is
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Figure 7. R-band luminosity functions as observed at z = 0. The three different lines are for three different values of extinction:
E(B − V ) = 0.0 (blue long-dashed), 0.15 (green solid), and 0.3 (red dot-dashed). The open square symbols give the observed luminosity
function, while the solid circles are the dust corrected data points, as shown in Fig. 13 of Adelberger & Steidel (2000).

fully sample the LBG population. In particular, the bright-
end of the LBG luminosity function is invariably incomplete
in simulations with small box size. Of equal importance is
a proper treatment of effective feedback processes. By con-
sidering a series of runs with different strengths of galactic
winds, we showed that without an effective feedback pro-
cess, the number of LBGs is overpredicted. However, for our
default model of strong winds, a reasonable space density of
bright LBGs is obtained. In particular, we found that our
G-series with a box size of Lbox = 100 h−1 Mpc has a quite
plausible LBG population, with luminosity functions in both
rest-frame V -band and observed-frame R-band that match
the observations reasonably well, at least at the bright-end.

Perhaps the most important conclusion of this pa-
per is that the observed properties of LBGs, including
their number density, colours, and luminosity functions,
can be well explained if the LBGs are simply associ-
ated with the most massive galaxies at z = 3, with me-
dian stellar mass of M∗ ∼ 1010 h−1M#. This conclusion
is consistent with earlier numerical studies based on hy-
drodynamic simulations of the ΛCDM model (Davé et al.
1999; Katz, Hernquist & Weinberg 1999; Nagamine 2002;
Weinberg, Hernquist & Katz 2002) as well as some semi-

analytic models (Baugh et al. 1998; Kauffmann et al. 1999),
and does not provide direct support for alternative models
which suggest that LBGs are star-bursting low-mass sys-
tems that later evolve into low-mass spheroids at z = 0.
This point is corroborated by the high rates of star forma-
tion with > 10 M# yr−1 seen over extended periods of time
of order 1 Gyr in the simulated galaxies, leading to the build-
up of typical stellar masses of 1010 h−1M# at z = 3. These
comparatively steady star formation histories are also con-
sistent with observational studies by Papovich et al. (2001)
and Shapley et al. (2001). Note however that these same
observations also find some evidence for starburst activity
(≥ 100 M#yr−1) within the last 500 Myr before z = 3, last-
ing for periods of ∼ 100 Myr. Such long violent bursts are
not seen in our SPH simulations, but they were present in
the simulations analysed by Nagamine (2002). Instead, mul-
tiple shorter bursts with time-scale of ∼ 10 − 20 Myr are
seen in our SPH simulations.

A recent study by Weatherley & Warren (2003)
however claims that the kinematic measurements of
Pettini et al. (2001) and Erb et al. (2003) favour the picture
of LBGs being low-mass starbursting systems. But the mea-
sured ‘rotation curves’ are strongly dependent on seeing, and
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plausible LBG population, with luminosity functions in both
rest-frame V -band and observed-frame R-band that match
the observations reasonably well, at least at the bright-end.
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dian stellar mass of M∗ ∼ 1010 h−1M#. This conclusion
is consistent with earlier numerical studies based on hy-
drodynamic simulations of the ΛCDM model (Davé et al.
1999; Katz, Hernquist & Weinberg 1999; Nagamine 2002;
Weinberg, Hernquist & Katz 2002) as well as some semi-

analytic models (Baugh et al. 1998; Kauffmann et al. 1999),
and does not provide direct support for alternative models
which suggest that LBGs are star-bursting low-mass sys-
tems that later evolve into low-mass spheroids at z = 0.
This point is corroborated by the high rates of star forma-
tion with > 10 M# yr−1 seen over extended periods of time
of order 1 Gyr in the simulated galaxies, leading to the build-
up of typical stellar masses of 1010 h−1M# at z = 3. These
comparatively steady star formation histories are also con-
sistent with observational studies by Papovich et al. (2001)
and Shapley et al. (2001). Note however that these same
observations also find some evidence for starburst activity
(≥ 100 M#yr−1) within the last 500 Myr before z = 3, last-
ing for periods of ∼ 100 Myr. Such long violent bursts are
not seen in our SPH simulations, but they were present in
the simulations analysed by Nagamine (2002). Instead, mul-
tiple shorter bursts with time-scale of ∼ 10 − 20 Myr are
seen in our SPH simulations.

A recent study by Weatherley & Warren (2003)
however claims that the kinematic measurements of
Pettini et al. (2001) and Erb et al. (2003) favour the picture
of LBGs being low-mass starbursting systems. But the mea-
sured ‘rotation curves’ are strongly dependent on seeing, and
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Figure 13. z′-band luminosity function for both ‘Large’ (G6, panel a) and ‘Medium’ boxsize (D5, panel b) simulations at z = 5. Survey
results for similar redshifts are shown with symbols. Simulation data are plotted as blue, green, and red curves representing extinction
values of E(B − V ) = 0.0, 0.15, and 0.30, respectively. Ouchi et al.’s z′-band survey data are shown as black crosses and boxes for the
two different survey fields (Ouchi et al. 2004, Fig. 16). The updated I-band survey data of Iwata et al. (2004) are shown as triangles.

Figure 14. z′-band luminosity function for all three boxsizes at
z = 5. Extinction colour-coding is the same as in the previous
plots. Solid and dashed lines are best fit Schechter functions to
Subaru Riz–LBG data, assuming a value for the faint-end slope
of α = −2.2 and −1.6, respectively (Ouchi et al. 2004, Fig. 16).
The dashed-dotted line has a slope of −2.0, but is not a fit to the
data.

(solid line). The simulated LF with E(B − V ) = 0.15 is
consistent with the faint-end slope between these two val-
ues, and the value of α = −2.0 (dash-dotted line) appears
reasonable.

Similar results emerged for z = 5. In Fig. 13, we show
the ‘Large’ and ‘Medium’ boxsize LFs and compare them
with data from Ouchi et al. (2004) and Iwata et al. (2004).
At z = 5, the survey data appear to be more consistent with

the simulations using E(B − V ) = 0.3, particularly at the
bright end, suggesting a slightly larger extinction at z = 5
than at z = 4. And again, when all three boxsizes are plot-
ted along with the best-fitting Schechter function in Fig. 14,
the most consistent value for the faint end slope α appears
to lie between −1.6 and −2.2. Note that there are small dis-
crepancies between the LF-estimates by Ouchi et al. (2004)
and Iwata et al. (2004). This may owe to slight differences
in the colour-selection criteria used in the two surveys.

In Fig. 15, we compare the UV-magnitude LFs at z = 6
in the ‘Large’ and ‘Medium’ boxsize simulations to data from
Bouwens et al. (2004) . Again, a value of E(B−V ) between
0.15 and 0.30 leads to the best match with the data, and an
extinction with E(B − V ) = 0.15 is favoured based on this
comparison.

Finally, Fig. 16 examines the evolution of the LF over
the redshift range studied. To this end, we plot all redshifts
for all boxsizes using the single extinction value E(B−V ) =
0.15. Overall, the LF of our simulations shows little if any
evolution over the redshift range in question. The absence
of strong evolution is probably related to the fact that the
evolution of the cosmic star formation rate (SFR) density
is quite mild from z = 3 to 6 in our simulations, as dis-
cussed by Springel & Hernquist (2003b) and Hernquist &
Springel (2003). In both SPH and total variation diminish-
ing (TVD) simulations (Nagamine et al. 2004), the cosmic
SFR continues to rise gradually from z = 3 to 5, and peaks
at z = 5 − 6. Nagamine et al. (2005a) have shown that the
evolution of the LF from z = 3 to z = 2 is about 0.5 mag, so
it is perhaps not too surprising that the evolution at higher
redshift is of comparably small size. Note that in terms of
proper time, the redshift interval from z = 6 to 3 is only
about as long as the interval from z = 3 to 2.
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Figure 1. Evolution of the total neutral hydrogen mass density in each simulation box as a function of redshift. The plotted values are
ΩHI × 103. We also show observational data points from Storrie-Lombardi & Wolfe (2000, open squares; only for DLAs), Péroux et al.
(2001, filled triangles; including the correction for the neutral gas not included in DLAs), Rao & Turnshek (2000, open triangles), and
Zwaan et al. (1997, open cross at z = 0). Left panel: A comparison of the Q-series (runs in 10 h−1Mpc boxes) is shown. The decrease in
ΩHI from O3 (no wind) to P3 (weak wind), and then to Q3 (strong wind), shows the effect of feedback by galactic winds. The comparison
between Q3, Q4, and Q5 shows the level of convergence achieved for runs with different resolution. For P3 (top short-dashed line), we
separately show ΩHI in regions of overdensity 1 + δ > 103 and 104 (middle and bottom short-dashed line, respectively). Right panel:

Results for the R-, D-, and G-series are shown. Q5 is also included to ease comparison with the left panel. Results for R3 and G4 are
omitted for clarity (see text).

where it becomes highly ionised by UV background radia-
tion. Interestingly, ‘O3’ (no wind run) exceeds all observed
data points, so a feedback effect such as galactic winds ap-
pears necessary to make the ΩHI measurements of the sim-
ulations consistent with observations. The results for our
‘strong-wind’ runs (Q3, Q4, Q5) underpredict the observa-
tional estimates at z = 3 slightly, but there is still marginal
agreement within 1 σ, which is encouraging. However, the
best value for the galactic wind strength parameter for our
simulation seems to lie somewhere between that of P3 (weak
wind) and the Q-runs (strong wind).

For the ‘P3’ run, we also show separate measurements
of ΩHI restricted to regions of overdensity 1 + δ > 103 and
104, respectively (red short-dashed lines). The fact that the
lines for 1+ δ > 104 and 103 have converged by z ! 3 shows
that most of the neutral hydrogen mass in the universe is
already in a highly concentrated form by this epoch.

In the right panel of Figure 1, we show our results for
simulations of the R-, D-, and G-series, together with Q5
for reference to the left panel. The results for D4 and D5
are consistent with one another at z = 3. ‘R3’ is not shown
because it is almost identical to ‘R4’, and ‘G4’ is omitted
because it underpredicts ΩHI significantly due to lack of res-
olution at z ≥ 3. By comparing to the simulations of the Q-
and D-series, we see that the resolution of the G-series is not
sufficient to correctly describe the neutral fraction at z = 3.
This is because even the 2× 3243 run G5 misses the neutral
gas content in large numbers of small dark matter haloes

that are present in the higher resolution runs at z = 3, such
as those of the Q-series. Therefore, we consider Q5 to be the
most reliable run at z = 3 among our simulation set. We
also see that ΩHI of ‘R4’ is lower than that of ‘Q5’, despite
the fact that the R-series has higher mass resolution than
the Q-series. This is likely due to the rather small box-size
of the R-series compared to the Q-series, which leads to an
insufficient sampling of rare, massive objects, and compro-
mises the use of R4 as a truly representative sample of the
universe.

The effect of the multiphase model adopted in the cur-
rent simulations can be assessed by setting the value of cold
gas mass fraction to x = 1 for the multiphase gas parti-
cles [see Equation (3)]. We find that the value of ΩHI be-
comes larger by about 15% in such a case. This suggests that
previous formulations of hydrodynamic simulations with-
out a consideration for the multiphase nature of the gas
would have overestimated the cold gas fraction by a similar
amount.

4 Hi COLUMN DENSITY & DLA

CROSS-SECTION

We now describe how we compute the Hi column density
NHI and the DLA cross-section σDLA for each dark matter
halo. First, we identify dark matter haloes by applying a
conventional friends-of-friends algorithm to the dark matter
particles in each simulation. We set the minimum number of
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Figure 6. Evolution of the DLA abundance from z = 4.5 to z = 0. Left panel: Cumulative DLA abundance as a function of total
halo mass at redshifts z = 4.5, 3, 1 and 0. Right panel: DLA abundance per unit redshift as a function of redshift. The data points
with error bars are the observational data from Péroux et al. (2001) (crosses) and Rao & Turnshek (2000) (open triangles at z < 1.5).
The exact simulation results from some of the runs are indicated by the symbols with run-names. The shaded region is our best-guess
for a confidence region based on combining all of our simulations. For reference, we show the power-law of dN/dz = N0(1 + z)γ with
N0 = 0.005 and γ = 2.5 as a long-dashed line.

earlier, our power-law fits to the σDLA−Mtot relation are not
well constrained for z = 0 (and possibly for z = 1 as well),
so the results at z ≤ 2 should be interpreted with caution.
At z ≥ 3, we saw that lower resolution runs tend to predict
a larger abundance due to a shallower slope in the relation
between the DLA cross-section and the halo mass, but it is
not clear if other forms of systematic bias dominate at very
low redshift for simulations with poor resolution. We will
need yet higher resolution simulations with large box-sizes
to make a more robust prediction of the DLA abundance at
z ≤ 2, and until then, it is not clear whether the current
results for DLA abundance at z ≤ 2, which tend to fall
below the observational data, are trustworthy. This is why
we have widened the shaded confidence region in Figure 6
significantly for z ≤ 2.

6 Hi COLUMN DENSITY DISTRIBUTION

FUNCTION

The column density distribution function f(N, X(z)) is
defined such that f(N, X)dNdX is the number of ab-
sorbers per sight line with Hi column densities in the in-
terval [N, N + dN ], and absorption distances in the interval
[X, X + dX]. The absorption distance X(z) is given by

X(z) =

∫ z

0

(1 + z′)2
H0

H(z′)
dz′. (9)

This definition is based on an argument by
Bahcall & Peebles (1969), who pointed out that the
probability of absorption for a quasar sight-line in
the redshift interval [z, z + dz] is dP ∝ (1 + z)2dr ∝

(1 + z)2[H0/H(z)]dz ≡ dX. In practice, if the comoving
box-size of the simulation is ∆L, then the corresponding ab-
sorption distance per sight-line is ∆X = (H0/c)(1 + z)2∆L.
For example, for ∆L = 10h−1 Mpc and z = 3, we have
∆X = 0.0534.

Assuming that DLAs do not overlap along a sight-line
through the simulation volume (which is a very good approx-
imation given the small size of the simulation box, where
the expected number of DLAs per sight-line at z = 3 for a
10h−1 Mpc path is ≈ 10−3), we can compute the NHI dis-
tribution function by counting the number of grid-cells with
column densities in the range [N, N + dN ]. In doing so, we
are treating each grid-cell element as one line-of-sight.

6.1 Hi column density distribution at z = 3

In Figure 7, we show the Hi column density distribution
function at z = 3. The solid triangles are the points directly
measured from the simulations. The open squares are the
observational data of Péroux et al. (2001, for 2.7 < z < 3.5
data), and the dashed curve is the fit to the same data based
on a gamma-distribution:

f(N) =
f∗
N∗

(

N
N∗

)−β

exp
(

−
N
N∗

)

. (10)

The parameters of the fit are (f∗, log N∗, β) =
(0.0406, 21.18, 1.10) Péroux et al. (2001, for 2.7 < z < 3.5
data). We note that all data by Storrie-Lombardi & Wolfe
(2000) are included in that of Péroux et al.’s.

In the panel for ‘Q3’ (upper right corner), we also show
the result of different smoothing methods, using crosses
(uniform cloud-in-cell distribution with # = [4π/3]1/3s)
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Figure 2: Left:Column density distribution function f(NHI). Open squares are the results
from the no feedback run, and the solid triangles from the strong feedback run. The short-
dashed line is the gamma function fit to the data points by Prochaska et al. (2005). Right:
Comoving DLA cross section as a function of halo mass. The shaded contours show the
distribution of halos for the run with strong feedback. The open triangle symbols are the
median points in each mass bin, and the solid line is the least-square fit to those points for
the same run. The dashed line is the same fit for the run with no feedback.

to less massive halos. Two qualitative trends were noted: (1) As the strength of galactic
wind feedback increases, the slope α became steeper while the normalization β remained
roughly constant. This is because a stronger wind reduces the gas in low-mass halos at a
higher rate by ejecting the gas out of the potential well of the halo. (2) As the numerical
resolution is improved, both the slope and the normalization increase. This is because with
higher resolution, star formation in low-mass halos can be described better and as a result
the neutral gas content is decreased due to winds. On the other hand, a lower resolution run
misses the early generation of halos and the neutral gas in them.

Earlier numerical work largely neglected the effects of star formation and feedback that we
described above, therefore they often overestimated the DLA cross section in low-mass halos,
resulting in higher value of predicted rate-of-incidence (see § 3.3). Obviously star formation
and feedback affect the distribution of DLA cross section as a function of halo mass, and
the effect needs to be studied further with better resolution and alternative models of star
formation and feedback. We will examine how the new implementation of star formation,
supernova feedback, and radiative transfer affect this relationship both qualitatively and
quantitatively.
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Comoving DLA cross section as a function of halo mass. The shaded contours show the
distribution of halos for the run with strong feedback. The open triangle symbols are the
median points in each mass bin, and the solid line is the least-square fit to those points for
the same run. The dashed line is the same fit for the run with no feedback.

to less massive halos. Two qualitative trends were noted: (1) As the strength of galactic
wind feedback increases, the slope α became steeper while the normalization β remained
roughly constant. This is because a stronger wind reduces the gas in low-mass halos at a
higher rate by ejecting the gas out of the potential well of the halo. (2) As the numerical
resolution is improved, both the slope and the normalization increase. This is because with
higher resolution, star formation in low-mass halos can be described better and as a result
the neutral gas content is decreased due to winds. On the other hand, a lower resolution run
misses the early generation of halos and the neutral gas in them.

Earlier numerical work largely neglected the effects of star formation and feedback that we
described above, therefore they often overestimated the DLA cross section in low-mass halos,
resulting in higher value of predicted rate-of-incidence (see § 3.3). Obviously star formation
and feedback affect the distribution of DLA cross section as a function of halo mass, and
the effect needs to be studied further with better resolution and alternative models of star
formation and feedback. We will examine how the new implementation of star formation,
supernova feedback, and radiative transfer affect this relationship both qualitatively and
quantitatively.
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Kennicutt Law



Kennicutt Law in Cosmological 
SPH Simulations

• Too much SF at      
low NHI in the    
original sim?

• Raising ρth seems to 
work better

• Making SF time-scale 
longer just lowers 
normalization

slope=1.55 1.4

1.25

1.0

original

high ρth

nth=0.2cm-3

nth=2cm-3
(cf. Kravtsov ‘03:  n=50 cm-3)



Column density distribution

longer SF time-scale

higher ρth   (x10) 

stronger feedback (x10)

original formulation



Alternative SF recipe:
Blitz’s Pressure Criteria



Blitz’s Pressure SF Criteria

Blitz & Rosolowsky (2006)



Blitz’s Pressure SF Criteria

(cf. Kravtsov ‘03:                    )



Pressure-density diagram in 
cosmological SPH simulation

nth=0.2 cm-3

Blitz’ external ISM pressure `P0’ 
when the molecular fraction is 

unity

Test run:

Q3b:  
Blitz’s low pressure +      
S&H (at P>P0)



f(NHI) with Blitz SF criteria

• Some overprediction 
at log NHI>21.

Prelim
inary



Blitz SF criteria

• slope became 
closer to 1.4. slope=1.0

green contour: original Q3 run
(10 Mpc/h, 2x144^3,  S&H SF model)

Prelim
inary

slope=1.55 1.4

1.25

(encouraging)



Problems in Current 
Cosmological Simulations

• Inadequate resolution 

• Angular momentum transfer problem

• Feedback by SNe and BHs

• Radiative Transfer



Future efforts

• Higher resolution: 10003 - 20003

• More realistic models of SF and feedback -- 
multiphase ISM

• Radiative transfer

• Code comparisons:  e.g.  AMR vs. SPH
(Adaptive Mesh Refinement vs. Smoothed Particle Hydrodynamics)



Code comparison: SPH  vs.  AMR

that of ordinary baryons, by a factor of !5–7 in the currently
favored !CDM cosmology. Since structure formation in the uni-
verse is primarily driven by gravity, it is of fundamental impor-
tance that the dynamics of the dark matter and the self-gravity of
the hydrodynamic component are simulated accurately by any
cosmological code. In this section we discuss simulations that
only follow dark matter in order to compare Enzo and GADGET
in this respect.

4.1. Dark Matter Power Spectrum

One of the most fundamental quantities to characterize the
clustering of matter is the power spectrum of dark matter den-
sity fluctuations. In Figure 2 we compare the power spectra of
DM-only runs at redshifts z ¼ 10 and 3. The short-dashed curve
is the linearly evolved power spectrum based on the transfer
function of Eisenstein & Hu (1999), while the solid curve gives
the expected nonlinear power spectrum calculated with the
Peacock & Dodds (1996) scheme. We calculate the dark matter
power spectrum in each simulation by creating a uniform grid of
dark matter densities. The grid resolution is twice as fine as the
mean interparticle spacing of the simulation (i.e., a simulation
with 1283 particles will use a 2563 grid to calculate the power
spectrum) and densities are generated with the triangular-shaped
cloud (TSC) method. A fast Fourier transform is then performed
on the grid of density values, and the power spectrum is calcu-
lated by averaging the power in logarithmic bins of wavenumber.
We do not attempt to correct for shot-noise or the smoothing
effects of the TSC kernel.

The results of all GADGETand Enzo runs with 1283 root grid
agree well with each other at both epochs up to the Nyquist

wavenumber. However, the Enzo simulations with a 643 root
grid deviate on small scales from the other results significantly,
particularly at z ¼ 10. This can be understood to be a conse-
quence of the particle-mesh technique adopted as the gravity
solver in the AMR code, which induces a softening of the grav-
itational force on the scale of onemesh cell (this is a property of all
PM codes, not just Enzo). To obtain reasonably accurate forces
down to the scale of the interparticle spacing, at least two cells per
particle spacing are therefore required at the outset of the calcu-
lation. In particular, the force accuracy of Enzo is much less ac-
curate at small scales at early times when compared to GADGET
because before significant overdensities develop the code does
not adaptively refine any regions of space (and therefore in-
creased force resolution to include small-scale force corrections).
GADGET is a tree-PM code—at short range, forces on particles
are calculated using the tree method, which offers a force accu-
racy that is essentially independent of the clustering state of the
matter down to the adopted gravitational softening length (see
x 2.2.2 for details).
However, as the simulation progresses in time and dark

matter begins to cluster into halos, the force calculation by Enzo
becomes more accurate as additional levels of grids are adap-
tively added to the high-density regions, reducing the discrep-
ancy seen between Enzo and GADGET at redshift z ¼ 10 to
something much smaller at z ¼ 3.

4.2. Halo Dark Matter Mass Function and Halo Positions

We have identified dark matter halos in the simulations using
a standard friends-of-friends algorithm with a linking length of
0.2 in units of the mean interparticle separation. In this section,

Fig. 1.—Projected dark matter (top row) and gas mass (bottom row) distribution for GADGETand Enzo in a slab of size 3 ; 3 ; 0:75 (h#1 Mpc)3. For GADGET (left
column), we used the run with 2 ; 643 particles. For Enzo (right column), the run with 643 dark matter particles and 1283 root grid was used.
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we consider only halos with more than 32 particles. We ob-
tained nearly identical results to those described in this section
using the HOP halo finder (Eisenstein & Hut 1998).

In Figure 3, we compare the cumulative DM halo mass
function for several simulations with 643, 1283, and 2563 dark
matter particles as a function of Lbox/e and particle mass. In the
bottom panel, we show the residual in logarithmic space with
respect to the Sheth-Tormen mass function, i.e., log (N > M )!

log (S&T). The agreement between Enzo and GADGET sim-
ulations at the high-mass end of the mass function is reasonable,
but at lower masses there is a systematic difference between
the two codes. The Enzo run with 643 root grid contains sig-
nificantly fewer low-mass halos compared to the GADGET
simulations. Increasing the root grid size to 1283 brings the low-
mass end of the Enzo result closer to that of GADGET.

This highlights the importance of the size of the root grid in
the adaptive particle-mesh method based AMR simulations.
Eulerian simulations using the particle-mesh technique require
a root grid twice as fine as the mean interparticle separation in
order to achieve a force resolution at early times comparable to
tree methods or so-called P3Mmethods (Efstathiou et al. 1985),
which supplement the softened PM force with a direct particle-
particle (PP) summation on the scale of the mesh. Having a
conservative refinement criterion together with a coarse root
grid in AMR is not sufficient to improve the low-mass end of the
halo mass function because the lack of force resolution at early
times effectively results in a loss of small-scale power, which
then prevents many low-mass halos from forming.

We have also directly compared the positions of individual dark
matter halos identified in a simulation with the same initial con-
ditions, run both with GADGETand Enzo. This run had 643 dark
matter particles and aLbox ¼ 12h!1 Mpc box size. ForGADGET,
we used a gravitational softening equivalent to Lbox/e ¼ 2048.
For Enzo, we used a 1283 root grid, a low overdensity threshold
for the refinement criteria, and we limited refinements to a dy-
namic range of Lbox/e ¼ 4096 (5 total levels of refinement).

In order to match up halos, we apply the following method
to identify ‘‘pairs’’ of halos with approximately the same mass
and center-of-mass position. First, we sort the halos in order of
decreasing mass and then select a halo from the massive end of
one of the two simulations (i.e., the beginning of the list).
Starting again from the massive end, we then search the other
list of halos for a halo within a distance of rmax ¼ fR!, where!

Fig. 2.—Dark matter power spectra at z ¼ 10 and z ¼ 3 for both Enzo
and GADGET simulations with 643 dark matter particles, Lbox ¼ 12 h!1 Mpc
(comoving), and varying spatial resolution. The short-dashed curve in each
panel is the linear power spectrum predicted by theory using the transfer func-
tion of Eisenstein & Hu (1999). The solid curve in each panel is the nonlinear
power spectrum calculated with the Peacock & Dodds (1996) method. Arrows
indicate the largest wavelength that can be accurately represented in the sim-
ulation initial conditions (k ¼ 2!/Lbox) and those that correspond to the Nyquist
frequencies of 643, 1283, and 2563 Enzo root grids.

Fig. 3.—Cumulative mass functions at z ¼ 3 for dark matter-only Enzo and
GADGET runs with 643 particles and a comoving box size of Lbox ¼ 12h!1 Mpc.
All Enzo runs have Lbox/e ¼ 4096. The solid black line denotes the Sheth &
Tormen (1999) mass function. In the bottom panel, we show the residual in loga-
rithmic space with respect to the Sheth-Tormenmass function, i.e., log (N > M ) !
log (S&T).
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Fig. 12.—Mass-weighted mean gas temperature and entropy for Enzo and GADGET runs as a function of redshift. The runs used are the same as those shown in
Figs. 7 and 8. [See the electronic edition of the Supplement for a color version of this figure.]

Fig. 11.—Redshift evolution of the two dimensional mass-weighted distribution of gas entropy vs. gas overdensity for four representative Enzo and GADGET
simulations. Rows correspond to ( from top to bottom) z ¼ 30, 10 and 3. In each panel six contours are evenly spaced from 0 to the maximum value in logarithmic scale,
with the scale being identical in all simulations at a given redshift to allow for direct comparison. Column 1: GADGET, 2 ; 643 particles, Lbox/e ¼ 2048. Column 2:
GADGET, 2 ; 2563 particles, Lbox/e ¼ 6400. Column 3: Enzo ZEUS hydro, 1283 DM particles, 1283 root grid, Lbox/e ¼ 4096. Column 4: Enzo PPM hydro, 1283 DM
particles, 1283 root grid, Lbox/e ¼ 4096. The increasing minimum entropy with decreasing overdensity in the Enzo results is an artifact of imposing a temperature
floor—a numerical convenience.

Fig. 12.—Mass-weighted mean gas temperature and entropy for Enzo and GADGET runs as a function of redshift. The runs used are the same as those shown in
Figs. 7 and 8. [See the electronic edition of the Supplement for a color version of this figure.]

Fig. 11.—Redshift evolution of the two dimensional mass-weighted distribution of gas entropy vs. gas overdensity for four representative Enzo and GADGET
simulations. Rows correspond to ( from top to bottom) z ¼ 30, 10 and 3. In each panel six contours are evenly spaced from 0 to the maximum value in logarithmic scale,
with the scale being identical in all simulations at a given redshift to allow for direct comparison. Column 1: GADGET, 2 ; 643 particles, Lbox/e ¼ 2048. Column 2:
GADGET, 2 ; 2563 particles, Lbox/e ¼ 6400. Column 3: Enzo ZEUS hydro, 1283 DM particles, 1283 root grid, Lbox/e ¼ 4096. Column 4: Enzo PPM hydro, 1283 DM
particles, 1283 root grid, Lbox/e ¼ 4096. The increasing minimum entropy with decreasing overdensity in the Enzo results is an artifact of imposing a temperature
floor—a numerical convenience.
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Extending the comparison to 
the runs with cooling & SF 

Gadget SPH Enzo AMR



The End


