Star Formation Efficiency in Neutral-Gas at High z

Art Wolfe & Hsiao-Wen Chen

Lyman Break Galaxies Properties (Stars) Comoving SFR Density (z=3)

$$\dot{\rho}_* = 10^{-1.5} - 10^{-0.8} M_{\odot} yr^{-1} Mpc^{-3}$$

Covering Factor (z=[2.5,3.5])

$$f_A < 10^{-3}$$
 for $R < 27.5$

Damped Lyman alpha Systems (Neutral Gas)

 $f_A = 0.33 \text{ for N(HI)} \ge 2 \times 10^{20} \text{ cm}^{-2}$

Star Formation in DLAs ?

- •Do DLAs undergo *in situ* star formation ?
- •If DLAs undergo *in situ* star formation, how does the comoving SFR density compare to that of LBGs?
- •Or is star formation at high z confined only to compact objects like LBGs?
- •In that case, what is the relationship between LBGs and DLAs? Are DLAs the neutral-gas reservoirs for star formation in LBGs?

Connection between Gas and Stars; Kennicutt-Schmidt Law $(\dot{\psi}_*)_{\perp}$ $(\dot{\psi}_*)_{\perp} = \begin{cases} 0 ; N_{\perp} < N_{\perp}^{crit} \\ K \times [N_{\perp}/N_c]^{\beta} ; N_{\perp} \ge N_{\perp}^{crit}, \end{cases}$

Surface Brightness

$$<{f I}_{
u_0}>={{f C}\dot{\psi_*}\over 4\pi(1+{f z})^3eta}~, \dot{\psi_*}{\equiv}{f K}{f (N/N_c)}^eta$$

 $\log N=21.2 \text{ cm}^{-2} \Rightarrow d\psi_*/dt=10^{-2} \text{ M}_{\odot} \text{ kpc}^{-2} \text{yr}^{-1}$

Implied surface brightness at z=3: μ_V =28.4 mag arcsec⁻² Measureable in F606W image from Hubble Ultra Deep Field

Cumulative Comoving SFR Density Predicted by the Kennicutt-Schmidt Relation for z=3

Observed H I Column-Density Distribution Function

How many DLAs in the UDF with z=[2.5,3.5]?

Results of UDF Search with F606W Image

- Unsmoothed Image (θ_{psf} =0.09"):
 - -Found 11,000 objects with V<30.5
 - -None satisfied criteria for *in situ* star formation at

Kennicutt rate: i.e. , $\mu_V > 26$, $\theta_{dla} > 0.25$ "

- Smoothed Images:
 - -Removed HSB objects: $\mu_V < 26$

-Smoothed image with Gaussian kernels with

FWHM= θ_{kern} to enhance SNR when $\theta_{kern} = \theta_{dla}$ -Let $\theta_{kern} = 0.25$ " to 4.0" or $d_{dla} = 1.9$ kpc to 31 kpc

Number of Detected objects versus θ_{kern}

Detected objects for θ_{kern} =0.5 arcsec

Significance of Upper Limits in UDF

•95 % confidence upper limit, $n_{co} < N_{95}/\Delta V_{co}$ •Comoving volume $\Delta V_{co} = 3.2 \times 10^4 \text{ Mpc}^3$

Comoving SFR Density: dρ_{*}/dt=n_{co}x(SFR)

Threshold SFR/Area: $(d\psi_*/dt)_{\text{threshold}} \alpha (I_{v0})_{\text{threshold}}$

Cumulative Comoving SFR Density: Theory vs Data

Lower SFR Efficiencies: Effect of Decreasing Normalization K

Lower SFR Efficiencies: Effect of decreasing slope β

(1) Lower SFR efficiency due to low Molecular Content of DLAs

- •Toomre instability produces gravitationally bound clouds: $N_{\perp} > N_{\perp}^{crit}$
- •But clouds cannot cool below ≈ 50 K due to low molecular content of DLA gas

-DLA Median $f_{H2}=10^{-6}$ -Galaxy Median $f_{H2}=10^{-1}$

- •In most models $\dot{\psi_*} \propto f_{H2}$
- •Thus, gravitationally bound atomic clouds do not collapse to form stars

(2) But DLA disks may be sub-critical (Toomre stable)

• f(N) exhibits break at $N_{\text{break}} = 10^{21.5} \text{ cm}^{-2}$. If DLAs are randomly oriented disks, N_{break} equals maximum N_{\perp} .

•Infer N_{\perp} versus r from f(N)

(2) But DLA disks may be sub-critical (Toomre stable)

• f(N) exhibits break at $N_{\text{break}} = 10^{21.5} \text{ cm}^{-2}$. If DLAs are randomly oriented disks, N_{break} equals maximum N_{\perp} .

(3) Critical Surface Density Increasing function of z

• $N^{\text{crit}} \propto \kappa \sigma$

• $\kappa \propto (G\rho)^{1/2}$ (epicyclic freq.)

• $N^{\text{crit}} \propto (1+z)^{3/2}$

•Neutral Gas Subcritical

Consquences of upper limit on comoving star formation Density Upper limit: $d\rho_*/dt < 10^{-2.7} M_{\odot} \text{ yr}^{-1} Mpc^{-3}$

1. Limit on Metal Production

-Predicted [M/H] <-2.2

compared to measured [M/H]=-1.4±0.07

-Source of observed metals?

2. Limit on Energy Input from in situ star formation into neutral gas

-[C II] 158 μ m cooling rate **C**=(2.0±0.5)x10³⁸ ergs s⁻¹ Mpc⁻³

-Grain photoelectric heating $\sim d\rho_*/dt$

-Predicted comoving heating rate: H_{DLA} < 2x10³⁷ erg s⁻¹ Mpc⁻³

-Source of Inferred Energy Input?

•Star formation in DLAs may be present, but in regions sequestered away from the neutral gas

•Molecular gas may be located at $r < r_{break}$

•Extend N_{\perp} to $r < r_{\text{break}}$

•Molecular gas may be Toomre unstable

Solution: Energy and Metal Input from LBGs

-Comoving Heating Rate from attenuated FUV LBG radiation: H_{LBG} =(3.0 ±1.5)x10³⁸ ergs s⁻¹ Mpc⁻³

-Metal input due to P-Cygni winds emitted by LBGs a possiblity

Solution does not apply to 50% of DLA population Heated by background radiation alone

-Embedded LBGs not required in these cases

-Source of metals?

Frequency Distribution of [C II] 158 µm Cooling Rates

• Kennicutt-Schmidt Law at high z predicts significantly higher SFR densities from DLAs than empirical upper limits

• Kennicutt-Schmidt Law at high z predicts significantly higher SFR densities from DLAs than empirical upper limits

•Physical Implications

-SFR Efficiency is lower in high-z neutral gas. Why?

(1) If $N_{\perp} > N_{\perp}^{crit}$, star formation suppressed by low molecular content of gas

(2) DLAs may be sub-critical: $N_{\perp} < N_{\perp}^{\text{crit}}$

• Kennicutt-Schmidt Law at high z predicts significantly higher SFR densities from DLAs than empirical upper limits

•Physical Implications

-SFR Efficiency is lower in high-z neutral gas. Why?

(1) If $N_{\perp} > N_{\perp}^{\text{crit}}$, star formation suppressed by low molecular content of gas

(2) DLAs may be sub-critical: $N_{\perp} < N_{\perp}^{\text{crit}}$

•Astrophysical Implications

Predicted metal content lower than observed at $z\sim3$ Comoving cooling rate exceeds upper limit on heating rate due to *in situ* star formation in DLA gas

• Kennicutt-Schmidt Law at high z predicts significantly higher SFR densities from DLAs than empirical upper limits

•Physical Implications

-SFR Efficiency is lower in high-z neutral gas. Why?

(1) If $N_{\perp} > N_{\perp}^{\text{crit}}$, star formation suppressed by low molecular content of gas

(2) DLAs may be sub-critical: $N_{\perp} < N_{\perp}^{crit}$

•Astrophysical Implications

Metal content lower than observed at $z\sim3$

Comoving cooling rate exceeds upper limit on heating rate due to *in situ* star formation in DLA gas

•Suggested Scenario

-DLAs with higher [C II] cooling rates powered by centrally located LBGs, which may also supply required metals -1/2 of DLA population heated by background radiation:no LBGs