Validation - an experimentalist’s perspective

G.R. Tynan

UCSD

Goal of the Exercise:

Show that a class of simulations reproduces the essential turbulent transport physics across a wide range of experiments, operating conditions, and devices

Use those simulations to provide insight into the future performance of new experiments
Hierarchy of Approaches & Requirements:

- **Lowest level**: Effective transport rates (fluxes or transport coefficients)
- **Intermediate level**: Turbulence & mesoscale structure statistics (spectra, corr functions, amplitudes, cross-phases, ZF/GAM amps, frequencies)
- **Deeper level**: Nonlinear dynamics of the turbulence/mesoscale system

Increasing Diagnostic Complexity & Analysis
Hierarchy Also Extends Across Devices, Conditions, and Models

- **Collisionless/weakly collisional finite beta plasmas:**
 - Core of tokamaks, stellarators;
 - GK Simulations

- **Collisional plasmas w/ finite beta**
 - Edge region;
 - collisional GK simulations, fluid simulations

- **Highly collisional plasmas w/ low beta**
 - Separatrix/SOL; small confinement devices & lab plasmas
 - collisional GK simulations, fluid simulations
An Example: Zonal Flow Generation from Collisional Drift Turbulence in a Lab Plasma

Tynan et al April 2006 PPCF
Comparing G.K. simulations with turbulence data: Current approach based on fluid picture of plasma

Simulation results:
\[\tilde{f}_{i,e}(\bar{x}, \bar{v}, t) \]

Reduced results:
\[\int \tilde{f}(\bar{x}, \bar{v}, t) d\bar{v}, \int \tilde{\nu}f(\bar{x}, \bar{v}, t) d\bar{v},... \]

Synthetic diagnostic
reproduces spatio-temporal response of turbulence diagnostics

Data analysis tools for
experiment and virtual data
(spectra, corr functions, PDFs, etc…)

UCSD
New Synthetic Diagnostic Capability Allows Direct Comparisons of Simulated and Measured Turbulence Characteristics

- Synthetic BES and CECE diagnostics have been developed as IDL post-processing tools for use with GYRO simulations.

- Short term goal is to develop corresponding IDL interface for GTC which will use same tools.
Application to Particle-based GK Simulations (e.g. GTC,...)

- Turbulence Analysis Requires Ensemble Averaging to Obtain Meaningful Result
- Experiments Use Ergodic Thm (Time Average = Ensemble Average)
- Simulation run time is short (~msec currently)
- Particle based approach MUST quantify significance of noise which will limit simulation duration
- **Impact:** Use spatial sampling of statistically independent regions; **may also need to consider ensembles of runs**
Status of Validation in this Project

- Several core plasma virtual diagnostics already exist (BES, CECE, PCI) or could be developed (Reflectometry, Scattering)
- Results have been integrated with DIII-D Turbulence Analysis Tools
- Need to develop interface between GTC Codes and Virtual Diagnostics
- Need to develop mesh generation from experimental configurations for input to GTC
- NEED TO RECRUIT A POST-DOC (UNDERWAY)
Likely Future Directions

• Consider how to integrate wave-particle physics into this process (going beyond fluid picture)
• Integrate into collisional edge/SOL GK simulations & cross-compare against fluid edge/SOL simulations
 – Would enable cross-model and small expt/confinement expt cross-comparisons
• Link core & edge/SOL simulations