What we learned about Electron Transport From Tore Supra

W. Horton
Department of Physics/Institute for Fusion Studies

In Collaboration with the Tore Supra Theory Group and
G.T. Hoang, M. Ottaviani and X. Garbet
Dept. of Controlled Fusion Research, CEA, Cadarache, France
Key Features of Tore Supra Transport Studies

- Clean electron power balance data with accurate T_e profiles and centrally deposited electron power
- Power scans from Ohmic to 8MW giving T_e up to 7kev [more recently higher P and T_e up to 9kev]
 - Flux Scaling with density & temperature
 - Integrated System Dynamics- Chronos

Fast Wave Electron Heating Database

- **DB of 26 Quasi-steady state plasmas**
 (duration ranging from 1 to 5 seconds $\approx 20 - 120 \times \tau_E$)
- No fast particles, no appreciable sawteeth.
- Electron / Ion channels are decoupled ($T_e \sim 2T_i$)
- Central localization of FW deposited power
- Up to 90% of FW power coupled to the electrons: $q_{\mathrm{rf}}^e \gg q_{\mathrm{ei}}, q_{\mathrm{ohm}}$

\Rightarrow Good confidence in transport power balance value of $q_e(r,t)$
Parametric Dependence: \(q_e = \text{const.} \; n_e^\beta \; T_e^\alpha \left(\frac{1}{L_{Te}} - \frac{1}{L_c} \right) \)
Critical Gradient and Internal Magnetic Fluctuations
\(\delta B \) by Cross-Polarisation Scattering

\[I_p = 1.3 \text{MA}, \quad B = 3.7 \text{T} \]
\[n_e(0) = 6 \times 10^{19} \text{m}^{-3} \]
RF power = 1MW - 3.3MW
Electromagnetic drift wave turbulence driven by the ETG is Standard Model $T_e(r,t)$

- Overpredicts T_e in the outer part of plasma ($r/a \geq 0.7$)
- Thermal energy W_e over-estimated by 10%
Predictive Simulations with ETG Model

for $\beta_e > \beta_{e,cr}$

$$q_e = C_e^\text{em} n_e T_e q \frac{c^2}{\omega_{pe}^2} \frac{V_e}{R^2} \left(\frac{R}{L_{Te}} - \frac{R}{L_c} \right)$$

for $\beta_e < \beta_{e,cr}$

$$q_e = C_e^\text{es} n_e T_e q^2 \left(\frac{\rho_e^2 V_e}{L_{Te}^2} \right) \left(\frac{R}{L_{Te}} - \frac{R}{L_c} \right)$$

For comparison: ITG-TEM flux

$$q_e = -n_e f_{tr,e} \chi^\text{ITG} \nabla T_i = C_e^\text{ITG} f_{tr, e} n_e T_i c_s q^2 \rho_s^2 \left(\frac{R}{L_{Ti}} - \frac{R}{L_c} \right)$$
Heat Flux versus Temperature Gradient Length$^{-1}$
Model Comparisons

Similar results in 2008 preprint Asp, Horton, Kim, Sauter et al for TCV plasma with 3X ECH heating

Now use $ARV = \frac{\text{variance of model from data}}{\text{variance of data}}$

ETG model explains about 70% of the data variation ($ARV \approx 0.3$)

while the ARV for the ITG-TEM model has $ARV \approx 1.3$..worse than “persistence prediction”
What have we learned?

- ETG model works well – quantitatively well. Consistent with historical problem since does not depend on presence of trapped electrons.

- TCV analysis of four phases of a third-harmonic ECH driven plasma agrees with ETG predicted $q_e(r,t)$ & $T_e(r,t)$ versus poor results from ITG/TEM models.

- NSTX/HHFW and FTU show similar ETG results to TS data and agree with ETG predictions.

- ETG is [should be] the standard, baseline model of electron thermal transport for toroidal systems.
ETG flux for real-time prediction in NSTX discharge

Real-Time forecasts of q_e and thus T_e may give way to predict NTMs and disruptions.

29 February 2008 UCSD
NSTX Electron Transport at Low B_T

Kaye et al, Chengdu, IAEA 2006 and Nucl Fusion 2007

ETG linearly unstable only at lowest B_T
- 0.35 T: R/L_{Te} 20% above critical gradient
- 0.45, 0.55 T: R/L_{Te} 20-30% below critical gradient

Non-linear simulations indicate formation of radial streamers (up to $200\rho_e$): FLR-modified fluid code [Horton et al., PoP 2005]

- Good agreement between experimental and theoretical saturated transport level at 0.35 T
- Experimental χ_e profile consistent with that predicted by e-m ETG theory [Horton et al., NF 2004] at 0.35 T

29 February 2008 UCSD
Inverse Cascade to Large Scale Vortices + Scaling Turbulence

\[E(k_{\text{perp}}, t) \]

\[k_{\text{perp}} \rho_0 e \]
Diagram of Fluctuations and Mixing Length Amplitudes

Fluctuation frequency vs wavenumber

Amplitude vs wavenumber