Status and Open Issues for GYRO - DIII-D
Validation

Presented by C. Holland
Feb. 29 2008

With help from: R. Waliz, J. Candy, G. Staebler, G.
McKee, M. Shafer, A. White, T. Rhodes, R. Prater,
J. DeBoo, G. Tynan, and many others
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e Review current results
e |Issue #1: Particle fluxes

e Issue #2: Underprediction of heat fluxes and
fluctuation levels at large r/a

Thoughts on what to do next + lessons learned

Caveat: this analysis is all using set of L-mode
discharges from A. White's 2007 expt. Noft clear yet
how general these results are.
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Profiles + Fluctuations
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Ex: Applying BES PSF to GYRO Simulation Data

 IDL post processing tool written to generate synthetic BES
array; PSF form taken from calculation by M. Shafer

0.04

e Tool first interpolates PSF data (genera’rec!m
on a regularly spaced (R,Z) grid) onto |
a grid compatible with GYRO data :
(which uses a field-line following -0.02
(r,0,0) coordinate system)

At each time point of interest, record
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— Synthetic signal defined as fdzx’lpPSF(x —x,y- y')énGYRO(x’,y’,t)

e

6nsynthetic (‘x’ Y t) =

fdzx;wPSF(x_xr,y_y;)

— GYRO signal at gridpoint closest to nominal BES location (term this signal the
unfiltered GYRO signal in this poster)
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Synthetic Diagnostic Array Layout

Create a 5x6 synthetic BES array centered in middle of simulation
— Offset 4 cm below midplane as in experiment

— 0.9 cmradial spacing, 1.2 cm vertical
e probably slightly too big; working to resolve

— Use same PSF for all channels

* Create 5 synthetic CECE measurements across radius
— Offset 5.5 cm above midplane, also as in experiment
— Use pairs asymmetric Gaussian for PSF/"spot” function
— Radial 1/e?2 diameter = 1cm, 3.8 cm vertically

— Because sim is local, all radial locations should be equivalent, can average to improve
syn. CECE statistics

Do calculations at 4 equidistant toroidal angles to get more statistics

 General note: believe synthetic BES diagnostic to be fairly mature and
complete, but synthetic CECE results should be considered to be more
preliminary
— Still need to consider several physics effects for CECE, such as relativistic electrons
and temperature anisotropy
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BES and CECE Fluctuation PSF Visualizations

in (R,Z) Plane forr/a = 0.5
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Linear growth rates
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p=0.5
Use t > 200
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Fixed-Gradient Sims Match Heat Fluxes and RMS

Fluc. Levels at r/a = 0.5, underpredictr/a = 0.75
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Fixed-Gradient Sims Match Heat Fluxes and RMS

Fluc. Levels at r/a = 0.5, underpredictr/a = 0.75
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Fixed-Gradient Sims Match Heat Fluxes and RMS

Fluc. Levels at r/a = 0.5, underpredictr/a = 0.75
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Correlation Function Comparisons
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Obtain good agreement in “shapes” o

specira at both locations

lab—frame (I&n(f)I?)
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Increase frequency resolution brings out finite Dn

structure of synthetic signals

If we calculate synthetic specta with double freq resolution,
observe features well-correlated with discrete n values

— Features robust with even higher resolution, but SNR decreases quickly
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SNR vs. frequency resolution
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Issue 1: Particle fluxes
total (B/‘_N)I. t.?ecfum: (PIL:e]:, ?vclll I(re:d)l |

g5 - - = T T
. beam

 According to ONETWO, particle

flows dominated by highly
uncertain wall source- can’tsay [ | . pofies

how well GYRO is predicting
flows

L —  wall
¢

0.05

" (MW /keV)

 Implications-
— Probably better to keep density

profile fixed in flux-matching 0.00
TGYRO simulations here :
— Impact on intrinsic rotation : °
studies (where rotation pinch [, . .,
0.2 0.4 0.6 0.8 1.0

may be correlated particle pinch) 0o
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Issue 2: Underpredicting heat fluxes at r/a > 0.5

 Key observations:
— deficit is in Q, -> issue is not just missing ETG/paleo
— “Shapes” of synthetic (i.e. long-wavelength) signals match well against experiment
— Particle flux at r/a = 0.75 currently pinch-dominated from high(er)-k modes
— Suggests we need more power in long wavelengths

* Possibilities
—  Dynamic impuritiese Z 4 <= 1.3
— Lack of up-down asymmetry in simulations?

— Missing long-wavelength transport

* Simple est. suggests below (but maybe near) KBM threshold, RBM maybe? But should show up in
GYRO, EM had little effect on NL results. Need additional local/non-local analysis?

— Numerical issues due to high collisionality
v = 0.4 a/C, atr/a =0.75; hope to address with upcoming v experiment
— Profile uncertainty and stiffness
» use TGLF to take a pass, but initial GYRO runs found less stiffness than earlier rho-star simulations
* Need work on franslating b/w TGLF + GYRO 1/O, ExB shear differences and uncertainty
e Uncertaintiy in mag. equilibrium?2 Use of Miller model (rather than 2D EFIT)2
— Core-edge coupling: turbulence from SOL/edge region “spreads” in
e CAN'TBE ADDRESSED BY GYRO- need edge GK eqn., open field lines, neutrals, etc.
e But: how farin do we realistically think it spreads (r/a =0.82 0.72 0.622)
* Less drastically, need to go to non-local, flux-matching simulations?
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Some thoughts on V&YV readlities (in no

particular order)

* Not obvious L-mode transport is always as stiff as sometimes assumed
— But: even large local gradient changes don't lead to big changes in profiles
— Q: how much variation is there across “typical” L- and H-modes

e Don’t count on having a reliable particle flux measurement (esp. in low-
power L-mode) until wall recycling/source can be better constrained

— May impact momentum physics validation as well
e Errors in magnetic equilibrium and translation to sim. input files common
and at least as significant as n_/Te/T./E, profile uncertainties
» Efficient data storage not very compatible with syn. diagnostics
— Syn. diagnostics often use multiple interpolations in implementation
e Simulating collisional edge”-ish” (p = 0.75) plasmas very challenging
— Story will be more than just multi-scale ETG+ITG | suspect
— How big do we think spreading from SOL in is¢

* Validation experiments will involve strong trade-offs between fluctuation
SNR, equilibrium profile measurements, model applicability, and range of
parameters one can independently scan
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