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Score

Problem 1:__________ (25 pts)

Problem 2: __________ (25 pts)

Problem 3: __________ (25 pts)

Problem 4: __________ (50 pts)

TOTAL: __________ (125 pts)

To receive full credit, you must show all your work

(including steps taken, calculations, and formulas used).

If you do not wish your quiz to be placed on the public shelves in the Quiz Return Room, write your name instead

of your code number at the top of each page.  If you choose this option, your quiz will be held in a locked cabinet

in the Quiz Return Room for pick-up with valid identification only.

Quiz Return Room

WLH 2126 (downstairs from the lab)

Mon - Fri, 10 AM - 12:30 PM, 1:00 PM - 2:00 PM
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Problem 1 (25 pts)

A flat sheet of brass has a 3.00-cm-diameter circular hole when it is 20 °C.  What would the diameter of

the hole be if the brass sheet was dropped into a reservoir of boiling water and allowed to reach thermal

equilibrium?  (The coefficient of linear expansion of brass is 18.9 × 10-6 K-1.)

Solution:  The brass sheet will undergo linear expansion, and so the diameter of hole will expand
according to the linear expansion formula:

    ∆L = L0α∆T

In this case, the characteristic length, L, is the diameter, so we may write instead,

    ∆D = D0α∆T

where D0 is the initial diameter, α is the coefficient of expansion, and ∆T is the change in temperature of
the brass that causes the expansion.

We wish to find the new diameter of the brass, not just its change in length.  The new diameter is simply
the original diameter plus the additional change in length:

    

Dnew = D0 + ∆D

= D0 + D0α∆T

The brass is initially 20 °C, and is placed in boiling water (100 °C), and so

∆T = 100 °C – 20 °C = 80 K

Now, inserting known quantities into the above equation gives,

    

Dnew = D0 + D0α∆T = 3.00 cm + 3.00 cm( ) 18.9 ×10−6  K-1( ) 80 K( )
= 3.005 cm

That is, the new diameter of the hole is 3.005 cm (or 3.01 cm).  Note that the change in diameter
is 4.54 × 10-3 cm.
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Problem 2 (25 pts)

You would like to cool down 250 g of water at an initial temperature of 30 °C by dropping some

ice (at 0 °C) into it.  If you want the final temperature of your water to be 0 °C, what is the minimum

amount of ice you would have to add?  (Ignore the heat capacity of the Styrofoam cup and any radiative,

conductive, or convective heat losses.)

Solution:  The combination of two materials, as in this problem, is an exercise in thermal equilibrium.  In
this case, the total energy of the ice and water (denoted by “I” and “W” subscripts) is conserved:

    ∆QI + ∆QW = 0

So, in order to solve this problem, we must essentially determine how (and how much) heat will be
transferred from one material to the other.  Initially the water is at 30 °C and the ice is at 0 °C.  The final
mixture is water at 0 °C.  Thus, the water must be cooled down (lose heat) and the ice must melt (gain
heat).  The heat the water must lose in order to cool down is

  ∆QW = mW cW ∆TW

where cW is the specific heat of water and is equal to 4.186 kJ/kg·K.
The heat the ice must gain to melt is

  ∆QI = +mI Lf

where Lf = 333.7 kJ/kg is the heat of fusion of water/ice.  Note that since the ice is already at 0 °C, its
temperature does not need to change, only its state (from ice to water).

Inserting these heat equations into the conservation of energy gives

    mI L f + mW cW ∆TW = 0

Solving this equation for the unknown mass of ice, mI, and inserting known quantities yields

    

mI = −mW cW∆TW

L f

= −
mW cW (Tf − TW )

L f

= − (250 g)(4.186 kJ/kg·K)(0 − 30 K)
333.7 kJ/kg

= 94.1 g

Thus, the minimum amount of ice at 0 °C you would have to add is 94.1 g.  This final mixture is entirely
water.  (However, if you added more ice, the initial mass of water would still be cooled to 0 °C, but not
all the ice you added would melt, and you would have some ice-water mixture all at 0 °C.)  Indeed, the
final mixture is actually 344.1 g of liquid water at 0 °C.

Notes on the units:  You may convert the masses to kg, and the constants (cW and Lf) to use in Joules
(instead of kJ).  However, since there are kilojoules in both the denominator and numerator of the final
equation, the energy units cancel out.  The units you use for the mass of ice will be the units of the final
answer.  In this case, grams seem more convenient.  Also, remember a change in temperature is the same
in Kelvin and in Celsius, so no conversion is necessary.
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Problem 3 (25 pts)

The brick siding of a house is 20.0 cm thick.  The temperatures inside and outside of the house

are 72 °F and 32 °F, respectively.  What is the rate of energy loss per square meter of the brick siding?

(The thermal conductivity of brick is about 0.63 W/m·K.)

Energy will be lost through conduction through the brick siding of the house.  The rate of conductive heat
loss is

    

Q
t

= H = −kT A
∆T
∆L

We wish to find this rate of energy loss per square meter (or per unit area), and dividing by the area, A,
gives

    

H
A

= −kT
∆T
∆L

where kT is the thermal conductivity of brick (0.63 W/m·K), ∆T is the temperature change on either side
of the brick siding, and ∆L is the thickness of the brick.

However, the temperatures are given in °F, and so they must be converted to Kelvin in order for the units
to properly cancel with kT.  The inside and outside temperatures are converted in the following manner:

  

72 ° F → 5
9

72 − 32( ) = 22.2 °C

32 ° F → 5
9

32 − 32( ) = 0 ° C

The change in temperature is simply the difference of these two temperatures, or 22.2 K.

Since all the desired quantities are known, inserting them into the above equation yields,

    

H

A
= −kT

∆T

∆L
= −(0.63 W/m·K)

22.2 K

0.20 cm
= 69.9 W/m2

The rate of (heat) energy loss per square meter of the brick siding is 69.9 W/m2.

Note that the shape of the brick siding is irrelevant, since the result is per unit area.  The only requirement
of the brick siding is that it has a uniform thickness of 20.0 cm.
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Problem 4 (50 pts total)

The following PV-diagram shows the cyclic thermodynamic process of a certain heat engine that is

operating with an ideal gas in a well-sealed cylinder.  The temperature of the gas at point A is 150 °C.

1.0 cm3 2.5 cm3 V

2.0 atm

1.0 atm

P

A B

CD

(a) Calculate the total amount of work done on/by the system during one complete cycle.  Was this

work done on or by the system?  (30 pts)

Solution: The work done during one complete cycle is the sum of the work done during each step:

Step A-B: Isobaric (dP = 0),

    

WAB = PA∆VAB = 2 atm ⋅ 0.101×106  Pa
1 atm

 

 
  

 

 
  

(2.5 −1.0) cm3

⋅ 1 m
100 cm

 

 
  

 

 
  

3 

 

 
 

 

 

 
 = 0.30 J

Step B-C: Isochoric (dV = 0),
Since dW = PdV (pg. 577) and dV = 0, this implies dW = 0, so no work is done (WBC = 0).

Step C-D: Isobaric,

    

WCD = PC ∆VCD = 1 atm ⋅ 0.101× 106  Pa
1 atm

 

 
  

 

 
  

(1.0 − 2.5) cm3

⋅ 1 m
100 cm

 

 
  

 

 
  

3 

 

 
 

 

 

 
 = −0.15 J

Step D-A: Isochoric,
Same as B-C: WDA = 0.

Adding up the work done in each step gives,

    

Wtot =WAB +WBC +WCD +WD A = 0.30 + 0 − 0.15 + 0

= 0.15 J

The total work done in one complete cycle is 0.15 Joules.  Since this work is positive, this is
work done by the system on the environment (work out).
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Problem 4 cont’d:

(b) Calculate the amount of heat that entered or left the system during the process A→B.  Did the

heat enter or leave the system?  (20 pts)

Solution:  The A-B process is isobaric since pressure is constant (dP = 0).  The amount of heat
transferred during any isobaric process is given by the following equation for a monatomic ideal
gas,

    ∆Q = 5
2

nR∆T  (isobaric process, monatomic ideal gas)

This equation was given in lecture.  Please see Tom or Andrew, or refer to the lecture notes for
the derivation of this equation.

Specifcally, for this problem, we may re-write the equation as follows,

    
∆QAB = 5

2
nR TB − TA( ) = 5

2
nRTB − nRTA( )

Now, TA is given in the problem (150 °C), but TB and the number of moles, n, are not.

Recall that the ideal gas law always applies to an ideal gas at any given instant (for example, at
states A or B).  That is, in general,

    PAVA = nARTA                        PBVB = nB RTB (ideal gas law)

In this problem, the system is sealed so nA = nB = n, and during the A-B process, PA = PB = P
(since dP = 0).  Thus, we may modify the above equations to give,

    PVA = nRTA                        PVB = nRTB

Notice that the right-hand-side of both of these equations constitutes the terms in parenthesis of
the heat equation above.  Straightforward substitution of these last two equations into the above
equation for heat transfer gives,

    

∆QAB = 5
2

nRTB − nRTA( )
= 5

2
PVB − PVA( ) = 5

2
P∆VAB

All the quantities in this final equation are given on the PV-diagram.  (Furthermore, P∆VAB was
already calculated in part (a).)  Thus, inserting known quantities and making unit conversions
(from cm3 to m3 and atm to Pa, as shown in part (a)), yields,

    

∆QAB = 5
2

P∆VAB = 5
2

(0.30 J)

= 0.75 J

The amount of heat transferred during the A-B process was 0.75 Joules.  Since this is positive,
heat entered the system.  (This also makes physical sense since during this process, the system
expanded, which would require heat input.)

Note: You could have explicitly solved for the number of moles and TB and still obtained the
same results.  As it turns out, n = 5.74 × 10-5 moles, and TB = 1058 K, so ∆T = 635 K.


