Quiz #2B

H. E. Smith 23 April 2004

Closed book and notes; only these sheets, Scantron, pen/pencil and calculator may be used. This is exam version **D**. Mark your Scantron Test Form "**D**" and code your UCSD ID# under ID Number. Write your Name and ID number on the second sheet of this Quiz. Answer Questions 1–6 on the Scantron; answer Problem 7 in the space provided. Organize your work if you want to be considered for partial credit. **GOOD LUCK!**

Useful Formulae:

nulae:
$$net\vec{F} = m\vec{a}$$

$$F_{grav} = mg$$

$$f_s \leq \mu_s N \qquad f_k = \mu_k N$$

$$< \vec{v} >= \frac{\Delta \vec{x}}{\Delta t} \qquad \vec{v} = \frac{d\vec{x}}{dt}$$

$$< \vec{a} >= \frac{\Delta \vec{v}}{\Delta t} \qquad \vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2 \vec{s}}{dt^2}$$

$$x = x_0 + v_{0x} \cdot t + \frac{1}{2} a_x \cdot t^2 \qquad y = y_0 + v_{0y} \cdot t + \frac{1}{2} a_y \cdot t^2$$

$$v_x = v_{0x} + a_x t \qquad v_y = v_{0y} + a_y t$$

$$g = -9.80 m s^{-2}$$

Quadratic:
$$ax^2 + bx + c = 0$$
 \rightarrow $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

- 1. In a naval battle a battleship simultaneously fires shells at enemy ships which are 1000m and 2000m away. In the trajectories shell 1 reaches a maximum height of 200m while shell 2 reaches a maximum height of 100m. The first shell to hit reaches its target in (Use $g = -10 \, m \, s^{-2}$):
- a) 4.5s
- b) 6.3s
- c) 10s
- d) 20s
- e) cannot answer w/o knowing the shells' velocities.
- 2. A car headed west at 10 m/s rounds a curve in 10s so that it is now headed north at the same speed. Its average acceleration is
 - a) 0
 - b) $1 m s^{-2}$
 - c) $1.4 \ m \, s^{-2}$
 - d) $2 m s^{-2}$
 - e) $4 m s^{-2}$
- 3. A box sits at rest on a table-top. Newton's third law force pairs are:
 - a) Weight of box & Normal force of table on box, $F_q(earth box)$ & $F_q(box earth)$
 - b) F(box-table) & Normal force of table on box, Weight of box & $F_g(box earth)$
 - c) Weight of box & $F_g(box earth)$, only
 - d) F(box-table) & Normal force of table on box, only.
 - e) Weight of box & Normal force of table on box, only.
- 4. An elephant and a field mouse collide in the African savannah. During the collision the force of the mouse on the elephant
- a) is at all times less than the force of the elephant on the mouse.
- b) is at all times greater than the force of the elephant on the mouse.
- c) is at all times equal to the force of the elephant on the mouse.
- d) is momentarily less than the force of the elephant on the mouse.
- e) we need to know velocities to answer.
- 5) You are running with a speed of 2 m/s while throwing a ball upward and catching it. If you throw the ball with a speed of 2 m/s, in order to catch it as it comes down you should: (neglect air resistance)
- a) throw it straight upward and maintain the same speed.
- b) throw it at an angle of 45° and maintain the same speed.
- c) throw it straight upward and slow down to catch it.
- d) stop and throw the ball straight upward then catch it 'cause you can't walk & throw at the same time.
- 6) A freight train with a mass of $10^7 kg$ is pulled by a locomotive capable of exerting a force of $10^6 N$; how long will it take for the train to move 1 km, accelerating uniformly.
- a) 100s
- b) 141s
- c) 200s
- d) 1410s
- e) 20.000s

Name____

ID # A_____

7. $m_1=2kg$ is connected to $m_2=3kg$ as shown. m_2 is accelerating downward at $5m\,s^{-2}$. What is the coefficient of kinetic friction, μ_k between m_1 and the table top?

 $\mu_k = \underline{\hspace{1cm}}$