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7.3

Taking the initial direction of motion of the wad of clay (of mass m) as positive, then before
its impact with the wall v, = +10m/s, and afterwards v, = 0. The change in momentum for

the clay is then :
Ap =my, — mwv, = —(1.0kg)(10m/s) = ~10N-s,

which, according to Eq. (7.4), is equal to the impulse delivered on the clay by the wall.

1.7

The first force F, is along the positive z-direction and delivers an impulse F, At, = (+20N) x
(2.0s) = +40N-s; while the second force F, is along the negative z-direction, delivering an im-
pulse F,At, = (—2.0N)(20s8) = —40N-s. Both impulses are represented by the corresponding
shaded areas in the force vs time plot shown below, with the area below the t-axis counted as neg-
ative. The net impulse experienced by the body is then F, At, + F,At, = +40Na—40Ns = 0;
so there is no net change in the momentum of the body, whose final momentum p, must then

be the same as its initial value:

p, =p, = mv, = (1.0kg)(10m/s) = 10kg-m/s.

F(N)

t(s)




7.10

Compared with a karate chop, a boxer’s punch is softer (i.e. with a smaller value of F_, )} but lasts
a longer time interval. Thus the first graph, with F, ~ 400N and At = 0.1258 ~0.025 = 0.13s,
is likely a boxer’s punch; while the second one, with F,, =~ 2000 N and At ~ 0.06s — 0.048 =
0.02s, is likely a karate’s chop.

The impulse represented by the first curve is approximately (400N)(0.108) = 40N-s; while
that by the second one is (2000 N){0.02s) = 40 N's, roughly the same as the first one.

The karate’s chop involves a peak force of about 2000 N, which is 5 times as much as that of
the boxer’s punch. So the karate’s chop is more likely to break bones.

7.14

Teking east as positive, the force of the wind is expressed as F(t) = +(0.025N/s)¢. The
impulse it delivered on the balloon between 0 and 0.40s is then

0.40s 0.40e 1 0408
/ F(t)dt = f (0.025 N/s)t dt = (0.025N/s) [Etz] = +2.0 x 1073 N-s.
0 0 0
The resulting change in momentum of the balloon, with mass m = 20.0g = 0.020 kg and initial
speed v, = 0.10m/s, is Ap = mv — mw,, with v its speed at t = 0.40s. Equate the impulse
with Ap: mv ~ my, = 2.0 x 10~3 N-g, and solve for v:

2.0 x 1073 N.s 2.0 x 1073 N-g
v=y,+ — =0.10m/s + 0.020 kg

= +0.20m/s,

-

due east.
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Taking the initial direction of motion of the hammer as positive, then before the impact its
initial velocity is v, = +5m/s, and afterwards v, = —1m/s. The change in momentum for
the hammer of mass m is then Ap = mv, — my, = m(v, — v,). If this is accomplished in
At = 1ms = 1 x 10728, then from Eq. (7.2) the average force exerted by the nail on the
hammer is

pooAp_mv—v) _ (kg [(-1m/s) — (+5m/e)] _

Ap _ SN =
= AL At 1x10-%s x 10°N = -6LkN,

where the negative sign indicates that F'“ is against the initial direction of motion of the
hammer. According to Newton’s Third Law, the force exerted by the nail on the hammer is
—F,, = 4+6kN, in the initial direction of motion of the hammer.
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7.39 N _

The initial momentum of the system consisting the person (P) and the boat (B) is B, = 0,
since neither was moving. As the person picks up a velocity ¥, with respect to the stationary
water, due north (which is taken to be positive), her momentum is m, ¥,. Meanwhile, the boat
is moving at a velocity ¥V, resulting in & momentum of m,¥,. The total momentum of the
gystem is now P, = m, V¥, + myV,. Conservation of momentum requires that p, = p,, which
becomes 0 = m, v, + myv, in scalar form. Solve for v, the velocity of the boat:

m,v,  (50kg)(10m/s)

. = —3.3m/s,
m, 150kg m/s

where the minus sign indicates that ¥, due south, opposite in direction to ¥,.




7.50

Use conservation of momentum. The initial momentum of the system consisting of the astronaut
(A), the TV camera (C), and the backpack (B) is P, = 0. As the astronaut throws the TV
camera. out at a velocity ¥, the momentum of the camera is m_V¥,. Meanwhile, the rest of
the system (with mass m, + mg) recoils backward at a velocity ¥, resulting in a momentum
of (m, + my)V. The total momentum of the system is now B, = m.¥, + (m, + m,)¥.
Conservation of momentum requires that , = P,, which in scalar form is p, = 0 = p, =
meve +(m, +mgy)v. Take the direction of ¥, as positive and solve for v, the recoiling velocity
of the astronaut (plus the backpack):

MVg (1.0kg)(15 m/s)

VT tm, . G0kg+10kg  O1Sm/s

where the minus sign indicates that the recoiling velocity ¥ of the astronaut is opposite in
direction to V. So after the first throw the astronaut gains a speed of 0.15m/s towards the
spaceship.

Similarly, suppose that the astronaut further gains a speed of v/, towards the spaceship after

throwing the backpack out with a speed of vy, then 0 = myv, +m, v}, which gives

1 _ _Mgp¥p _(IOkg)(IOm/s) _

v, = — = 90ke = —1.1m/s,
meaning that he gains another 1.1m/s in speed toward the spaceship after tossing out the
backpack.
1.57

Apply conservation of momentum each time an astronaut throws or catches the asteroid (A).

For the first step, in which Neil (N) throws the asteroid at sally (8), Py, +D., =0 = Dye + P
or
My Uy + M, v, =0,

where m,, = 100kg, m, = 0.500kg and, taking the direction of motion of the astercid as
positive, v,, = +20.0m/s. This gives v,, = —0.100 m/s, opposite to the direction of motion
of the asteroid.

Now the second step, in which Sally catches the asteroid. We have p,, =p' =p| +pl, or

[

m,av,, = (m, + ms)vsf:

where mg = 50.0kg, m, = 0.500kg, and v,, = +20.0m/s. This gives v, = +0.198m/s, in
the same direction of motion as that of the asteroid.

Finally, as Sally throws the asteroid back to Neil, p) +py =p] +pl =p,, +p.,, or
mAv,, + mgvl = (m, +mg)vl .

Plugging in the values of m,, m,, and noting that v//, = —20.0m/s and v, = +0.198 m/s, we
solve for v/, the final velocity of Sally, to obtain v = +0.400 m/s.

8t!?

7.58
Since the two cars are of equal mass and travel at the same speed in opposite directions, their
initial momenta cancel, yielding p; = 0 for the two-car system before the collision. After

the collision, the final momentum of the wreckage is p, = muv,, where m is its total mass.
Conservation of momentum then gives p, = mv, = p, = 0, or v, = 0. So the wreckage won't
move after the collision.
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1.71
Apply conservation of momentum to the system consisting of the two billiard balls, each with
mass m:

P, =M, + MY, = Py = T, + T,

Also, for elastic collisions

Uy — Uy Uy — Uy -

Taking north as positive, then v,, = +15.0m/s and v,, = —10m/s. Solve for v,, and v,, to
obtain v, = v, = 15m/s and v, = v, = —10m/s. So the two balls just exchanged their
velocities as a result of their elastic collision.
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1.73

Since there is no external force in the horizontal direction, the momentum of the bullet-block
system is conserved in the collision. The initial momentum of the system is entirely borne by
the bullet: p, = myv,. After the collision the bullet and the clay block (C) has reached a
common speed v, 80 p, = (M, + m,)v,. Equate p, with p, to obtain

Mp¥Vy = (mB +mc)vc .

After the collision, the bullet-block system rises to a new height h, trading its kinetic energy
1(mg -+ mg)v2 for the gravitational potential energy, (m, +mg)gh:

1
E(ma +me)v? = (my +mg)gh.

Solve the second equation for v,: v, = +/2gh. Plug this result into the first one and solve for
vy, the initial speed of the bullet:

v, = (m_%t;%),/—zgh.




