Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS-TTBP)

PSACI-PAC Meeting-PPPL 6/5-6/2008
i.) PERSONNEL

- P.H. Diamond, Principal Investigator, UCSD
- Fred L. Hinton, Senior Research Scientist, UCSD
- Dr. John Mandrekas, DOE OFES - Office of Science Program Officer

Collaborating Institutions/P.I.'s
- Taik-Soo Hahm (institutional co-PI), Weixing Wang, Gregory Rewoldt, Stephane Ethier, PPPL
- Wendell Horton (institutional co-P.I.), Francois Waelbroeck, U TX, Austin
- Zhihong Lin (institutional co-PI), Liu Chen, Yong Xiao, Igor Holod, Wenlu Zhang, UCI
- Scott Klasky (institutional co-P.I.), ORNL
- Viktor Decyk (institutional co-P.I.), UCLA
- Kwan-Liu Ma (institutional co-P.I.), UC Davis
- Mary Hall (institutional co-P.I.), USC
- Mark Adams (institutional co-P.I.), Columbia U

Domestic Collaborators
- George Tynan, Ozgur Gurcan, Christopher Holland, Stefan Mueller, Christopher McDevitt (UCSD),
- C.S. Chang (New York University), Keith Burrell (General Atomics),
- Stanley Kaye, Daren Stotler (PPPL)

International Collaborators
- Jiaqi Dong, Jiangang Li (China) • Yanick Sarazin, • Virgina Grandgirard (France)
- Sanae-I Itoh (Japan) • Gyung Su Lee, Hyeon Park (Korea)

Embedded Scientific Application Partnership (SAP):
Scientific Data Management Technologies to Accelerate Fusion Scientific Discovery
- Arie Shoshani (PI), LBNL
ii.) ORGANIZATION

→ Executive Committee (monthly teleconference)
 P.H. Diamond, UCSD - P.I., Physics
 Z. Lin, UCI - Computation
 T.S. Hahm, PPPL - Physics
 W. Wang, PPPL - Computation
 Y. Xiao, UCI - GTC Code Development
 S.Klaskly, ORNL
 S.Ethier, PPPL \{ - High Performance Computing
 S. Kaye, PPPL - Validation
 G. Tynan, UCSD - Validation
Project Advisory Committee

C.-S. Chang, C.I.M.S./N.Y.U. - Chair

X. Garbet, C.E.A., Cadarache

K.H. Burrell, G.A.

Y. Idomura, J.A.E.A.

T.-H. Watanabe, N.I.F.S.

M. Norman, U.C.S.D.
GPS leverages off and collaborates with:

- Base program at: PPPL, UCI, UCSD

- G.S.E.P. (Lin)
 - C.P.E.S. (Chang)
 share 8M hr. INCITE Award with GPS

Postdocs Supported by GPS:

- Yong Xiao, UCI
- Igor Holod, UCI
- Wenlu Zhang, UCI
- Kazuhiro Miki, UCSD (arrived 5/08)
- 1 offer pending, UCSD
- Other recruitment in progress
→ GPS Computing

- independent but interactive streams of code development and physics studies within:

 GTC FRAMEWORK

- West: Irvine, et al. (Lin)
 GTC Code, etc.

- East: PPPL, et al. (Wang)
 GTC - S Code, etc.

→ common:

 physics program
 analysis tools
 supporting theory program
 supporting HPC program
GPS-TTBP Computing Resources

• Joint INCITE proposal by GPS-TTBP, GSEP & CPES awarded 8M hours of Jaguar @ORNL

• ORNL Jaguar CPU hours: 3.7M (INCITE + Director’s)+4.5M (250TF pioneer application)

• NERSC Franklin MPP hours: 9.5M (~1.5M ORNL hours)

• TACC at U. Texas Lonestar & Ranger?
iii.) SCIENTIFIC PROGRAM

1.) Physics Studies in Drift Wave Turbulence and Transport

2.) GTC Framework Development

3.) High Performance Computing

4.) Validation of Gyrokinetic Models
1.) Physics Program

a.) Turbulent transport of toroidal momentum

- motivated by intrinsic rotation phenomena

- goal: understanding of off-diagonal toroidal momentum flux \rightarrow pinch and residual stress

- special attention to:
 - relation of $V\phi$ and n pinch
 - $\langle V_E \rangle'$ and neoclassical effects
 - anomalous momentum transport in electron channel-dominated regimes (i.e. NSTX)
Plans & Progress for GTC-Neo (W.X. Wang, G. Rewoldt, …)

- GTC-Neo is a global δf gyrokinetic particle-in-cell code, including finite-orbit-width (banana width) effects, which make the transport nonlocal. GTC-Neo can calculate neoclassical particle, momentum, and energy fluxes, along with E_r, E_θ, j_b, etc. The code is now routinely applied to experiments (NSTX & DIII-D).

- Here Γ_ϕ, the radial flux of toroidal angular momentum, is shown for an NSTX case (in internal code units) versus r/a. The n_i gradient contribution is small, the T_i gradient contribution is moderate and is always inward (pinch!), and the ω_ϕ gradient contribution is largest, and has both signs.

- Here we show $\chi_{i\text{-eff}}$ and $\chi_{\phi\text{-eff}} = \Gamma_\phi / [R^2 n_i m_i (d \omega_\phi/dr)]$ (in m^2/s) versus r/a for the same NSTX case. Ion energy transport is comparable to neoclassical (so anomalous ion energy transport is small), yet angular momentum transport is much larger than neoclassical (so anomalous angular momentum transport is dominant)!
GTS/GTC-NEO validation excise: co-existence of normal ion heat transport and anomalous momentum transport

- Neoclassically $\chi_{\phi}/\chi_i \sim 0.01 - 0.1$, and neoclassical contribution to toroidal momentum transport is negligibly small
- GTS simulations verified strong coupling between ion momentum and heat transport for ITG turbulence: $\chi_{\phi} \sim \chi_i$
- Finite residual turbulence can survive strong mean $E \times B$ shear flow induced damping, and drive an insignificant ion heat flux and a finite momentum flux significantly higher than neoclassical level
- Equilibrium $E \times B$ flow shear is found to reduce turbulence driven transport for energy more efficiently than for momentum
- These may explain experimental observations of near neoclassical ion heat and anomalous momentum transport
Various Physics Mechanisms exist for Nondiffusive Flux

Generic:
[Itoh, PFB ‘92], [Diamond, IAEA’94], [Coppi, NF 02], [Diamond, et al., PoP ‘08],…

E x B Shear:
[Dominguez et al., PFB ‘93], [Garbet et al., PoP’02], [Gurcan et al., PoP ‘07]

Wave Particle Resonant Interaction:
[Chen, JGR ‘99], [Shaing, PRL ‘01], [Diamond et al., PoP ‘08]

Magnetic Curvature:
[Hahm et al.,PoP ‘07, ‘08][Gurcan et al., PRL ‘08]

Coriolis Drift:
[Peeters et al., PRL ‘08]

It’s likely:
A combination of two or more mechanisms is necessary to reproduce basic features of experiments.

Eg., Simple Transport Model [Gurcan, Diamond, Hahm et al., submitted ‘08] for H-mode plasmas in terms of Pinch and Residual Stress:

- V can be obtained by magnetic curvature [Hahm et al., PoP ‘07]
- S can be obtained ExB shear [Gurcan et al., PoP ‘07]
- Also, include simple ExB shear reduction [Hinton, PFB ‘91]
GTC Simulation of Toroidal Momentum Transport

• Recent tokamak experiments observed spontaneous toroidal rotation and inward pinch of toroidal momentum [Rice et al, NF07; Ida, PRL01]

• Momentum flux is measured for shifted Maxwellian plasma in GTC global simulation of ion temperature gradient (ITG) turbulence

• Simulation with rigid toroidal rotation find inward flux of toroidal momentum, independent of rotation direction

• Simulation with sheared toroidal rotation find both diffusive and off-diagonal momentum fluxes. Measured $\chi_\phi/\chi_i=0.2-0.7$

• Quasilinear calculation using measured fluctuation spectrum shows that resonance occurs at particle energy higher than temperature and thus $\chi_\phi/\chi_i=0.7$

Fig. 6. Off-diagonal part of the momentum flux

[Holod & Lin, TTF08]
Gyrokinetic turbulence drives off-diagonal and diffusive momentum transport – from GTS simulations

- A robust, large inward Γ_ϕ is found in post-saturation phase of ITG turbulence (in the direction opposite to momentum diffusion for this case)
- Core plasma spins up with $\Delta u_\parallel \sim$ a few $\%$ of v_{th} (no momentum source at edge)
- Mechanism: generation of residual stress due to k_\parallel symmetry breaking induced by self-generated ZF shear

$$\langle k_\parallel \rangle(r) = \frac{1}{qR_0} \sum (nq - m)\delta\Phi_{mn}^2 \sum \delta\Phi_{mn}^2$$

- Smaller Γ_ϕ in long-time steady state is likely diffusive with effective χ_ϕ/χ_i on order of unit, consistent with experiments and early ITG theory
b.) Collisonless Trapped Electron Mode (CTEM) and Electron Temperature Gradient Driven (ETG) Turbulence (Early Appl. Topic)

• motivated by electron thermal, particle transport
• goal: - understand saturation mechanisms and transport with strong resonance coherency
 - compare/contrast with ETG studies
 (ongoing at PPPL)

• special attention to:
 - zonal flow, corrugation effects
 - resonance detuning, distortion
 - CTEM turbulence spreading
 - related EPM avalanching (GSEP)
CTEM instability driven by toroidal precessional resonance, detuning of which is weak; QLT has not been verified for electron heat transport in CTEM

GTC simulation find that CTEM saturation amplitude increases an order of magnitude when zonal flow is suppressed [Xiao & Lin, TTF08]

Characteristic time scale of CTEM close to inverse ZF shearing rate

GTC simulation of CTEM scheduled for pioneer application on ORNL computer

| \left[\frac{L_{ne}}{v_i} \right] | \tau_{wp} = \frac{4\chi}{3\delta v_r^2} | \tau_{||} = \frac{1}{\Delta k_{||} v_i} | \tau_{e} | \tau_{edd} | \tau_{rb} | \tau_{ax} | \tau_{s} | \frac{1}{\gamma} |
|---------------------|---------------------|-------------|---------|---------|--------|--------|--------|---------|
| ETG | 1.3 | 1.7 | 2.5 | 13.4 | 139 | 110 | 11 |
| ITG(A) | 1.6 | 1.7 | 2.2 | 4.9 | 23 | 15 | 1.4 | 9.1 |
| ITG(k) | 1.6 | 1.8 | 1.64 | 3.6 | 12.6 | 6.6 | 0.87 | 5.0 |
| ITG(k) | 0.7 | | 8.8 | | 67 | | | |
| CTEM(i) | 0.26 | 1.91 | 7.7 | 1.82 | 19.3 | 9.27 | 0.65 | 4.0 |
| CTEM(e) | 0.61 | | 7.8 | | 19.6 | | | |
Test Simulation:
- \(m_i/m_e = 100 \),
- \(0.2 \leq r/a \leq 0.8 \),
- 0.28M grids/plane,
- 20 electrons/cell,
- low-\(\beta \) numerical equilibrium
- 2432 cores of Franklin,
- wall clock time: 7 hours

- Streamers are sustained after nonlinear saturation
- Clear zonal flow structure is generated, but too weak to break streamers
- Real NSTX simulation \(> (50 - 100) \times \) more expensive – very challenging!
Study of ETG Turbulence in NSTX

- NSTX shot #124901a02 at t = 300 msec was identified as well-diagnosed in the core plasma.
 - Tangential scattering measurements were carried out at r/a~0.3
- In GTS, the number of grid points on a flux surface depends on the local value of the gyroradius, which is determined from the experimental temperature profile.
 - The grid resolution needs to be at the electron gyroradius level
 - Require a very large number of grid points
- The mixed-model MPI-OpenMP capability of the code is being used to maximize the amount of memory per MPI process.
 - Multi-threading is used within each quad-core socket to parallelize the work at the loop level
- Full system (31,232 cores) global ETG simulations with real electron mass
c.) Nonlocality in Turbulence and Transport

- motivated by ρ_* scaling, edge-core coupling

- goal: understand physics and mechanism of departure from quasi-local GB model

- special attention to:
 - ρ_* - v_* interplay, via shear flows
 - testing models of spreading
 - edge - core spreading/coupling
 - physics model for turbulence intensity profile
Turbulence spreading is reduced by E x B shear

GTS nonlinear simulation of ITG turbulence exhibits significant turbulence spreading into the linearly stable zone

[Wang, Hahm, Lee et al., PoP 14, 072306 ‘07]

With ExB shear, spreading extent, Δ is reduced as expected from simple analytic nonlinear diffusion model

[Hahm, Diamond, Lin et al., PPCF 46, A323 ‘04]:

Balancing propagation time to damping time,

$$\Delta / V_s \sim 1 / |\gamma| \Delta \quad (V_s / |\gamma|)^{1/2}$$

ω_{ExB} increases damping rate slope $|\gamma|$ and reduces fluctuation intensity locally. Spreading speed V_s gets reduced with fluctuation intensity.
GTC Simulation of CTEM Bursting & Spreading

- Collisionless electron mode (CTEM) turbulence has been identified in some experiments as probable candidate for electron transport.
- GTC linear simulation of CTEM benchmarked with GT3D & FULL.
- GTC nonlinear simulation finds bursting originates at maximal drive, spreading both inward & outward.
- Inward spreading ballistic with a speed close to drift velocity.

[Rewoldt, Lin & Idomura, CPC07]
[Lin, APS07]
d.) Secondary Structure Dynamics

- motivated by critical role of self-generated flows, structures in regulating turbulence, now universally acknowledged

- goal: elucidate detailed physics of flow structure, evolution, feedback-especially in collisionless regimes

- special attention to:
 - collisionless ZF saturation
 - spreading - ZF interaction
 - space-time flow structure
 - mean flow - zonal flow interplay
Short Term Plans on Physics and Validation

• Nonlinear Simulations of Turbulence Driven Momentum Transport:
 Identify non-diffusive flux (pinch and residual stress),
 Compare with theory predictions,
 Relevance of transients? Is time-averaged flux more meaningful?
 Study turbulence modification of mean flows (plenty of examples exist
 where neoclassical predictions fail, when supposed to work)

• Role of Trapped Electrons in Core Turbulence
 Detailed characterization of ZF: \((\omega, q_r)\) spectra, shearing rate,…
 Phase-space info: Distortion of “f” due to precession resonance
 Plot \(\delta T_e\) as well as density fluctuations
 Look for evidence of T.E. Particle pinch from TEP theory

• Radial Dependence of Turbulence and Transport
 High fluctuation towards the edge ---> Revisit Turbulence Spreading

• Validation
 Develop Synthetic BES, CECE, High-k Scatt. Diagnostics
 Develop and use formula which quantifies the degree of agreement in
 flux, fluctuation amplitudes (density, temperature), correlation function,…
2.) GTC FRAMEWORK
GTC Physics Module Developed for Specific Application

- Perturbative (δf) method for ions
- Fluid-kinetic hybrid electron model for electrons
 - Collisionless trapped electron mode (CTEM) turbulence
 - Electromagnetic turbulence with kinetic electrons
 - Shear Alfvén wave (SAW) excited by energetic particle
- Multi-species via OO Fortran
 - Energetic particle diffusion by microturbulence
- Guiding center Hamiltonian in magnetic coordinates
- Global field-aligned mesh: truly global geometry
- General geometry MHD equilibrium using spline fit
- Fokker-Planck collision operators via Monte-Carlo method
GTC Numerical Method Designed for Parallel Computing

- Finite difference & finite element elliptic solvers
 - Iterative method for electrostatic simulation
 - Sparse matrix solver (PETSc) for direct solver
 - Pade approximation & integral gyrokinetic Poisson equation
- Multi-level parallelism
 - Particle-field domain-decomposition via uni-directional MPI
 - MPI-based particle decomposition
 - Loop-level parallelization with OpenMP efficient for multi-core
- PIC optimization includes electron sub-cycling & vectorization
- Statistical analysis of fluctuations/particles, and noise control
 \[Holod & Lin, PoP2007\]
- Visualization of 3D fluid and 5D particle data for physics insights
GTC Simulation of Electromagnetic Turbulence with Kinetic Electron

- Global GTC simulation using fluid-kinetic hybrid electron model
- Stabilization of ITG mode by finite beta
- Excitation of kinetic ballooning mode
- Enhancement of ITG & KBM growth rate by kinetic electrons

Nishimura, Lin & Wang, PoP07

Lin et al, PPCF07

Nishimura, Lin & Chen, CiCP08
GTC Plan

• Version integration & control (with Decyk)
• Physics modules
 › Full-f ion & profile evolution
 › GTC-XGC core-edge coupling (with CPES), turbulence-Alfven wave coupling (with GSEP), & turbulence-neoclassical coupling
• Particle noise analysis and control
 › Characterization of particle noise in full-f
 › Deterministic collision operator (with Hinton)
• Particle-field domain-decomposition for 100,000+ cores
• PIC optimization for multi-core (with Hall of PERI & Wichmann of Cray, Either)
• Visualization of particle-field interaction (with Ma of IUSV)
• Parallel I/O, data streaming, workflow, & dashboard (with Klasky of SDM)
• Synthetic diagnostics (with Holland & Tynan)
GTS turbulence simulation capabilities for tokamak experiment

- Gyrokinetic Tokamak Simulation (GTS) code: generalized gyrokinetic particle simulation model

- Shaped cross-section; experimental profiles; consistent rotation and equilibrium $\mathbf{E} \times \mathbf{B}$ flow; linear Coulomb collisions; · · ·

- Interfaced with MHD equilibrium codes (based on ESI interface) and TRANSP data base

- Kinetic(electrostatic) electrons via the split-weight scheme

- Switches to control physics modules: ITG, ETG, kinetic electrons (TEM, ITG-TEM), ...

- Linear coupling with neoclassical simulation by GTC-NEO
GTS and GTC-NEO Development

- A new algorithm based on expanding ion distribution around the collisionless neoclassical equilibrium and corresponding linear collision operators are being developed for δf simulation (in collaboration with Hinton at UCSD).
 - huge weight associated with high energy ions and steep T_i gradient in existing δf scheme
 - this advanced scheme overcomes difficulties for simulating neoclassical physics of high temperature, steep gradient plasmas and impurities
 - approach to integrated δf simulation capability with nonlinear interplay between neoclassical and turbulent dynamics
 - start to implement into GTC-NEO

- A web-based user interface for GTS/GTC-NEO is under development

- Multi-ion species in GTS/GTC-NEO to be developed
GTS and GTC-N EO Development

- A full-f version of GTS is being tested
 - preliminary ITG simulation test:
 - 1000 particles/cell
 - (0,0) components of electric field (both NC and ZF) zeroed out
 - more careful debugging and benchmarking are required
Short and long term plans for PPPL codes

- A web-based user interface is being developed
- full-f capability is being tested (with Kolesnikov and Lee)
- multi-ion species to be developed
- EM to be developed (with Lee and Startsev)
- multi-ion species into GTC-NEO with a new δf scheme and collision operator (with F. L. Hinton)
- integrated δf simulation capability with nonlinear interplay between neoclassical and turbulent dynamics
3.) High Performance Computing
Advances in High Performance Computing for the GTC framework

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Run on more than 10K processors.</td>
<td>• Replace current IO strategy with ADIOS and use particle domain decomposition.</td>
</tr>
<tr>
<td>• Grids getting larger.</td>
<td>• Use OpenMP + MPI.</td>
</tr>
<tr>
<td>• 128-bit floating-point capabilities enable each processor to</td>
<td>• Vectorize key points in code to use SSE3 instruction set.</td>
</tr>
<tr>
<td>simultaneously execute up to four floating-point operations per core.</td>
<td>• Develop an easy to use analysis framework.</td>
</tr>
<tr>
<td>• Target more end-users.</td>
<td></td>
</tr>
</tbody>
</table>
Performance Issues for GTC framework

• Now 4 cores per nodes, petaflop upgrade will give us 8 cores per node.
 – GTC uses OpenMP. Latest runs will use OpenMP infrastructure.

• Latest upgrade moves from 19,320 to 31,000, and finally to 111,000 cores.
 – 64 bit bus, moves to 128bit bus.
 • Most vectorize code using SSE instructions.
 • Latest results from GTC with TEM gives significant performance boost.
 – Old GTC IO breaks down on >12,000 cores.
 • Move to the Adaptable IO System.

• Data output increases from 10 TB/simulation to 200TB/simulation.
 – Need advanced workflow technology + ADIOS to manage the data.
ADIOS + Dashboard

- ADIOS is an IO componentization allowing one interface for many implementations.
- ADIOS allows users to change the implementation at runtime, and has shown to get 50% of peak IO performance on the Cray at ORNL.
- Dashboard + Kepler workflow is scalable to thousands of processors, and GTC is being incorporated into this enterprise technology.
 - MySQL, Apache, Flash, AJAX.

GTC can be speed up (20 seconds/write to <5 seconds. For large runs, numbers are x100.

Old GTC IO

New GTC IO

Scientific Codes

External Metadata (XML file)

ADIOS API

buffering

MP/IO

LIVE/DataTap

DART

HDF-5

pnetCDF

Viz Engines

Others (plug-in)
4.) Validation of Gyrokinetic Models

→ definition: GPS-TTBP Workshop on Physics and Validation; UCSD: 2/29, 3/1

- Participants from PPPL, UCI, UCSD, Univ. TX, UCLA, G.A., NYU

- Mix of simulation, theory, experiment

- Intensive informal group discussion

→ Outcome:

- Validation focus:

 δf gyrokinetic models of ion thermal and particle flux with "dynamic edge boundary conditions"
rationale:

validation should follow "front" of physics studies
- off diagonals (pinch) important, so choice:
 - stresses κ_i, D and V
 - breaks flux \leftrightarrow diffusion identity
 - n.b. caution: particle source ambiguous
- dynamic b.c. \Rightarrow incorporate inward spreading from edge to boost intensity levels at $\rho > .6!$?

Other Issues:

- explore low-n modes (i.e. trapped ion) excluded in flux tube schemes
- validation metric should:
 - reward success with flux and fluctuations
 - account for noise?!
- need to quantitatively characterize profile stiffness
GTC Simulation of Foundation for Transport Model

- Prediction of ITER confinement requires accurate transport model; Most existing transport models assume some forms of quasilinear theory.
- GTC simulation of toroidal electron temperature gradient (ETG) turbulence dominated by radial streamers for examining the validity of quasilinear theory.
- Comprehensive analysis of spatial and temporal scales find that electron heat transport is diffusive with a characteristic time scale of electron parallel decorrelation time.
- Wave-particle decorrelation, not eddy mixing, regulate electron heat transport in ETG turbulence; Quasilinear transport theory in tokamak successfully tested.

[Lin et al, PRL07]

| τ_{wp} = $\frac{4\chi_e}{3\delta v_r^2}$ | $\tau_{||} = \frac{1}{\Delta k v_x}$ | $\tau_{\perp} = \frac{3}{4s^2\theta^2 k_\theta^2 \chi_e}$ | $\tau_{\text{eddy}} = \frac{L_x}{\delta v_r}$ | $\tau_{rb} = \frac{4L_x^2}{3\chi_e}$ | $\tau_{\text{auto}} = \frac{1}{\gamma}$ |
|---|---|---|---|---|---|
| 4.2 | 5.3 | 8.0 | 42 | 437 | 346 | 33 |
GTC Simulation of Energetic Particle Transport

UCI

- Recent tokamak experiments revive interest of fast ions transport induced by microturbulence [Heidbrink & Sadler, NF94; Gunter et al, NF07]

- Radial excursion of test particles found to be diffusive in GTC global simulation of ion temperature gradient (ITG) turbulence

- Detailed studies of diffusivity in energy-pitch angle phase space
 - Diffusivity drops quickly at higher particle energy due to averaging effects of larger Larmor radius/orbit width, and faster wave-particle decorrelation

- NBI ions: lower diffusivity for higher born energy

Zhang, Chen & Lin, TTF08
In collaboration with SciDAC GSEP
New Synthetic Diagnostic Capability Allows Direct Comparisons of Simulated and Measured Turbulence Characteristics

- Synthetic BES and CECE diagnostics have been developed as IDL post-processing tools for use with GYRO simulations.

- Short term goal is to develop corresponding IDL interface for GTC which will use same tools.
Validation Plans for NSTX

• **Low-k turbulence**
 - Reflectometry
 - Implement a synthetic reflectometer diagnostic into the TORIC full wave code to determine density fluctuations from HHFW wave field
 - Use this information to determine change in plasma density fluctuation with onset of HHFW
 - BES
 - BES diagnostic will be implemented on NSTX for 2009
 - BES synthetic diagnostic will be built into GTS, GYRO codes to calculate density fluctuations in radius range r/a~0.4 to 0.8
 • Confirm hypothesis that ions are near neoclassical in H-mode plasmas

• **High-k turbulence (high-k scattering)**
 - Build synthetic high-k scattering diagnostic into GYRO, GTS codes to determine non-linear amplitudes/spectra of electron-scale turbulence (ETG and short-wavelength CTEM) for comparison to experiment
Outlook for GPS Validation Program

- GPS-TTBP validation effort will work closely with related DIII-D effort
- C. Holland and G. Tynan will help supervise postdocs working on validation
- Validation will require:
 - common, accessible toolkit for GTCF
 - report of noise monitoring
- Interviews for validation postdocs ongoing

Related Work: Tests of Physics Basics of Transport Models

- Seeks to explore validity, self-consistency of standard modelling approximations (I.e. quasilinear theory)
- Likely productive synergy with validation effort
iv.) Recent Activities and Recognition

a.) Activities
 → Two “Kick-Off Workshops”:
 a.) GTC Framework - UCI, 1/24
 b.) Physics and Validation - UCSD, 2/29-3/1
 → Project Meeting at TTF: 3/28

b.) Achievements
 → INCITE Award (joint with GSEP, CPES)
 → 3 U.S. IAEA Selections:
 P.H. Diamond, et al. - Toroidal Momentum Transport Physics
 Z. Lin, et al. - Physics Basis Of Transport Models
 W. Wang, et al. - Turbulence ↔ Neoclassical Interaction
v.) Future Plans

a.) Near-term emphasis on:
 - toroidal momentum transport, including $\langle V_E \rangle$
 and neoclassical effects/feedback
 - CTEM physics
 - initial validation studies

b.) Activities:
 - meeting with International members of Project PAC
 at EPS, IAEA
 - all hands meeting at APS
 - possible small informal working meetings
 i.e. possible topic: secondary structures, flows and multi-scale
 interaction
JOURNAL PUBLICATIONS and CONFERENCE PROCEEDINGS

BOOK CONTRIBUTION

TALKS

Diamond, P.H., "Physics and Modeling of Multi-Scale Interaction in Plasmas," Invited Speaker, Kyoto University, Kyoto, Japan, March 3-4, 2008. (Unable to attend due to schedule conflicts)

Diamond, P.H., "Comments on Dynamics of "Non-locality" in Transport," Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas, La Jolla, CA, February 29-March 1, 2008.

Additional UCI GPS publications and talks

• Publications

• Talks

