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ABSTRACT

It is generally assumed that the central galaxy in a dark matter halo, that is, the
galaxy with the lowest specific potential energy, is also the brightest halo galaxy
(BHG), and that it resides at rest at the centre of the dark matter potential well.
This central galaxy paradigm (CGP) is an essential assumption made in various fields
of astronomical research. In this paper we test the validity of the CGP using a large
galaxy group catalogue constructed from the Sloan Digital Sky Survey. For each group
we compute two statistics, R and S, which quantify the offsets of the line-of-sight
velocities and projected positions of brightest group galaxies relative to the other
group members. By comparing the cumulative distributions of |R| and |S| to those
obtained from detailed mock group catalogues, we rule out the null-hypothesis that the
CGP is correct. Rather, the data indicate that in a non-zero fraction fBNC(M) of all
haloes of mass M the BHG is not the central galaxy, but instead, a satellite galaxy. In
particular, we find that fBNC increases from ∼ 0.25 in low mass haloes (1012h−1M⊙ ≤
M <

∼ 2 × 1013h−1 M⊙) to ∼ 0.4 in massive haloes (M >
∼ 5 × 1013h−1 M⊙). We show

that these values of fBNC are uncomfortably high compared to predictions from halo
occupation statistics and from semi-analytical models of galaxy formation. We end by
discussing various implications of a non-zero fBNC(M), with an emphasis on the halo
masses inferred from satellite kinematics.

Key words: methods: statistical – galaxies: halos – galaxies: kinematics and dynam-
ics – dark matter – galaxies: clusters: general

1 INTRODUCTION

According to the current paradigm of galaxy formation, all
galaxies form as a result of gas cooling at the centre of the
potential well of dark matter haloes. Structures form hierar-
chically, such that smaller haloes merge to form larger and
more massive haloes. When a halo and its ‘central’ galaxy
is accreted by a larger halo, it becomes a subhalo and its
galaxy becomes a ‘satellite’ galaxy. In this paradigm, it is
assumed that ram-pressure and tidal forces strip satellite
galaxies of their gas reservoir, causing their star formation
to be quenched shortly after having been accreted. The cen-
tral galaxy (i.e., the galaxy with the lowest specific poten-
tial energy), however, continues to accrete new gas, and is

⋆ E-mail: rskibba@as.arizona.edu

also expected to cannibalize some of its satellites. Conse-
quently, it is generally assumed that the central galaxy is
the most luminous, most massive galaxy in a dark matter
host halo, and that it resides at rest at the centre of the
halo’s potential well. Following van den Bosch et al. (2005;
hereafter vdB05), we will refer to this as the ‘Central Galaxy
Paradigm’ (CGP).

There are numerous areas of astronomy in which the va-
lidity of the CGP is an essential assumption, although this is
rarely enunciated. Examples are various techniques to mea-
sure halo masses, such as satellite kinematics (e.g., McKay et
al. 2002; van den Bosch et al. 2004; More et al. 2009), weak
lensing (e.g., Mandelbaum et al. 2006; Johnston et al. 2007;
Cacciato et al. 2009; Sheldon et al. 2009b), and strong lens-
ing (e.g., Kochanek 1995; Cohn et al. 2001; Koopmans &
Treu 2003; Rusin et al. 2003). In addition, the CGP also fea-
tures in halo occupation modelling, where assumptions have
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to be made regarding the distribution of galaxies within dark
matter haloes in order to compute the galaxy-galaxy corre-
lation function on small scales (e.g., Scoccimarro et al. 2001;
Sheth et al. 2001; Yang et al. 2003; Zehavi et al. 2005; Zheng
et al. 2005; Cooray 2005; van den Bosch et al. 2007; Tinker
et al. 2008), and in algorithms developed to identify galaxy
groups and clusters in photometric or spectroscopic redshift
surveys (e.g., Yang et al. 2005a, 2007; Berlind et al. 2006;
Koester et al. 2007).

Whether central galaxies actually comprise a special
population has been debated for many years. However, re-
cent analyses of galaxies in groups and clusters (e.g., Wein-
mann et al. 2006; Skibba et al. 2007; von der Linden et
al. 2007; van den Bosch et al. 2008; Pasquali et al. 2009,
2010; Skibba 2009; Hansen et al. 2009) and halo model anal-
yses of galaxy clustering (e.g., Skibba et al. 2006; Cooray
2006; van den Bosch et al. 2007; Skibba & Sheth 2009) have
explicitly shown that central galaxies are indeed a distinct
population and exhibit different properties (e.g., colour, star
formation activity, AGN activity, morphology, stellar popu-
lation properties) than satellite galaxies of the same stellar
mass, and with different dependencies on the mass of their
host halo. In addition, these studies have shown that cen-
tral galaxy properties are strongly correlated with halo mass,
while those of satellite galaxies only reveal a very weak de-
pendence on the mass of the halo in which they orbit. How-
ever, it is important to realize that in virtually all of these
studies, central galaxies are assumed to the the brightest (or
most massive) halo galaxies. If this aspect of the CGP is not
correct for a non-negligible fraction of all haloes, the differ-
ences between centrals and satellites found by these studies
will have to be considered lower limits.

The validity of the CGP has been investigated by a
number of authors. In particular, several recent, observa-
tional studies have shown that although most brightest halo
galaxies (hereafter BHGs) are nearly at rest near the cen-
troid of their group or cluster, or at the peak of the cluster
X-ray emission, some of them are not (e.g., Beers & Geller
1983; Malumuth et al. 1992; Bird 1994; Postman & Lauer
1995; Zabludoff & Mulchaey 1998; Oegerle & Hill 2001;
Yoshikawa et al. 2003; Lin & Mohr 2004; von der Linden et
al. 2007; Bildfell et al. 2008; Hwang & Lee 2008; Sanderson
et al. 2009; Coziol et al. 2009). These studies have focused on
either cD galaxies in clusters, or on brightest cluster galax-
ies (BCGs) in general. It has been argued that most cD
galaxies form a subpopulation of BCGs (e.g., Bernstein &
Bhavsar 2001; Coziol et al. 2009) and may have grown by
“cannibalizing” smaller neighboring galaxies.

In an early study, Beers & Geller (1983) analyzed the
spatial distribution of bright galaxies in 56 rich clusters and
argue that cD galaxies tend to lie at local density peaks but
not necessarily at the bottom of the potential well of the
whole cluster. Oegerle & Hill (2001) found that, out of their
sample of 25 Abell clusters, the cD galaxies of four of them
have significant peculiar velocities relative to the cluster ve-
locity. More recent studies have analyzed the positions and
velocities of BCGs. For example, in a study of 833 SDSS
clusters, von der Linden et al. (2007) found that 21 BCGs
in their sample lie further than 1 Mpc away from the mean
galaxy in the cluster. Hwang & Lee (2008) found that the
BCGs of two clusters out of a sample of 24 have signifi-
cantly offset velocities and positions; these two clusters also

appear to be in dynamical equilibrium. Recently, Coziol et
al. (2009), using a sample of 452 Abell clusters selected for
the likely presence of a dominant galaxy, estimated that the
BCGs have a median peculiar velocity of 32% of their host
clusters’ radial velocity dispersion.

We emphasize that these results based on large clusters
do not necessarily hold for less massive haloes. After all, in
galaxy clusters, the ratio L2/L1 of the luminosities of the
two brightest galaxies tends to be much smaller in a Milky
Way (MW)-sized halo, on average (e.g., van den Bosch et al.
2007). For example, for the halo hosting the MW it is the
ratio of the luminosities of the Large Magellanic Cloud and
the MW, which is ∼ 0.1 (van den Bergh 1999), while this ra-
tio is much closer to unity in Virgo, Coma and other nearby
clusters (Postman & Lauer 1995). Consequently, it is only
natural to expect that the CGP is more likely to be valid for
low mass haloes than for massive cluster-sized haloes. Nev-
ertheless, vdB05 used a large sample of 3473 galaxy groups
from the group catalogue of Yang et al. (2005a), and con-
clusively falsified the assumption that the brightest group
galaxy is always at rest at the centre of the potential well.
In this paper we extend the analysis of vdB05 using a larger,
more accurate group catalogue, and focusing on different as-
pects of the CGP as a function of halo mass. In particular, we
separately test two aspects of the CGP, namely, (i) central
galaxies reside at rest at the centre of their host halo’s po-
tential well, and (ii) central galaxies are the brightest, most
massive galaxies in their host haloes. We do so by comparing
three hypotheses:

• H0: Our null hypothesis is that the CGP is correct: cen-
tral galaxies are always the brightest objects in their haloes
and are at rest at the centre of the potential well.

• H1: Central galaxies are the brightest objects in their
haloes, but they have a velocity and spatial offset with re-
spect to the centre of the potential well, such that the sys-
tems still obey the Jeans equations (i.e., they are still in
dynamical equilibrium). We will specify the amount of off-
set via a velocity bias parameter, bvel, to be defined in Sec-
tion 4.2.

• H2: Central galaxies reside at rest at the centre of the
potential well, but they are not the brightest objects in a
fraction fBNC (for ‘Brightest-Not-Central’) of all dark mat-
ter haloes.

In order to avoid confusion, throughout this paper we use the
term ‘central galaxy’ to refer to the galaxy with the lowest
specific potential energy. The central galaxy is the BHG in
H0 and H1, but not in H2, and its location coincides with
the centre of the halo’s potential well in H0 and H2, but not
in H1.

We base our study on the galaxy group catalogue of
Yang et al. (2007), extracted from the Sloan Digital Sky
Survey (SDSS; York et al. 2000) Data Release 4 (DR4;
Adelman-McCarthy et al. 2006). We analyze both the posi-
tions and velocities of BHGs relative to those of the other
member galaxies, and compare the results to mock group
catalogues that correspond to one of our three hypotheses.
The large SDSS group catalogue, with accurate halo mass
estimates, allows us to falsify H0 and to quantify the degree
to which H1 and H2 are valid (i.e., to constrain the values
of bvel and fBNC).

This paper is organized as follows. In Section 2, we
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present two statistics that quantify the offsets of BHGs,
and which can be used to assess deviations from the central
galaxy paradigm. We describe the SDSS group catalogue in
Section 3 and the construction of mock group catalogues in
Section 4. In Section 5, we compare these mock catalogues to
the data, in order to test our three hypotheses. We find that
both H0 and H1 can be ruled out, but that H2 yields results
in agreement with the data as long as 0.25 <∼ fBNC

<∼ 0.4,
with a weak dependence on halo mass. In Section 6, we dis-
cuss our results and compare them to predictions from halo
occupation statistics and from two semi-analytic models of
galaxy formation. We also discuss the implications for stud-
ies of satellite kinematics. Finally, we end the paper with
our conclusions and a discussion of additional implications
of our results.

Throughout this paper, we adopt a flat ΛCDM cosmol-
ogy with Ωm = 0.238, ΩΛ = 1−Ωm, n = 0.951, σ8 = 0.744,
and we express units that depend on the Hubble constant
in terms of h ≡ H0/100 kms−1 Mpc−1. In addition, we use
‘log’ as shorthand for the 10-based logarithm.

2 PHASE-SPACE STATISTICS OF CENTRAL

GALAXIES

In order to test the CGP (i.e., hypothesis H0), we use the
line-of-sight velocities of galaxies obtained from their red-
shifts. In what follows, vBHG refers to the line-of-sight ve-
locity of the BHG, and vsat,i refers to the line-of-sight ve-
locity of the ith satellite galaxy. We define the difference
∆V = v̄sat−vBHG between the mean velocity of the satellite
galaxies and that of the BHG. If the CGP is correct and
vsat,i follows a Gaussian distribution with velocity disper-
sion σsat, then the probability that a halo with Nsat satellite
galaxies has a value of ∆V is given by

P (∆V )d∆V =
1√
2πσ

exp

[

− (∆V )2

2σ2

]

d∆V (1)

where σ = σsat/
√
Nsat. Therefore, in principle, one could

define the parameter

R =

√
Nsat(v̄sat − vBHG)

σsat
, (2)

and test the CGP by checking whether R follows a normal
distribution with zero mean and unit variance. However, the
velocity dispersion σsat is generally unknown, and instead we
must use its unbiased estimator

σ̂sat =

√

√

√

√

1

Nsat − 1

Nsat
∑

i=1

(vsat,i − v̄sat)2 . (3)

Following vdB05, we use the following modified parameter
as an indicator of the offset between BHGs and satellite
galaxies:

R =

√
Nsat(v̄sat − vBHG)

σ̂sat
. (4)

This parameter is similar to the relative peculiar velocities
of brightest cluster galaxies, |vpec|/σcluster, used in related
studies (e.g., Malumuth et al. 1992; Coziol et al. 2009). If
the null-hypothesis of the CGP is correct, R should follow a
Student t-distribution with ν = Nsat−1 degrees of freedom.

Note that Pν(R) approaches a normal distribution with zero
mean and unit variance in the limit Nsat → ∞.

In practice, although the galaxy group finder (Yang
et al. 2005a, 2007) has been thoroughly tested with mock
SDSS catalogues to reliably identify galaxies residing in the
same dark matter halo, it is not perfect. In particular, be-
cause of redshift errors and redshift-space distortions, the
group finder inevitably selects some interlopers (galaxies
that are not associated with the same halo). In addition,
the SDSS suffers from various incompleteness effects. If the
actual BHG is missed or misidentified, R will be measured
with respect to a satellite galaxy, and |R| will tend to be
overestimated. The presence of interlopers and incomplete-
ness effects tend to create excessive wings in the R distri-
bution, and therefore a direct comparison with the Student
t-distribution cannot be made. To circumvent these prob-
lems, we compare the R-distributions obtained from galaxy
groups identified in the SDSS to those obtained from groups
identified in mock galaxy redshift surveys (Section 4), which
suffer from interlopers and incompleteness to the same ex-
tent as the real data.

We also investigate the spatial offsets of BHGs in this
paper, and to do so we introduce the following parameter,
analogous to the parameter R, that quantifies the spatial
separation between BHGs and satellite galaxies, using their
projected angular separations perpendicular to the line-of-
sight:

S =

√
Nsat(r̄p,sat − rp,BHG)

σ̂rp,sat

(5)

where r̄p,sat is the mean projected position of satellite galax-
ies in a group, in terms of the galaxies’ mean right ascensions
and declinations, and

σ̂rp,sat =

√

√

√

√

1

Nsat − 1

Nsat
∑

i=1

(rp,sat,i − r̄p,sat)2. (6)

Both r̄p,sat − rp,BHG and σ̂rp,sat are expressed in h−1 kpc in
the computation of S .

For the mean and standard deviation v̄sat and σ̂sat in
the R parameter (Eqn. 4), and r̄p,sat and σrp,sat in the S
parameter (Eqn. 5), we have tested that other estimators
for these quantities, such as the biweight estimator and the
gapper (Beers et al. 1990), have an insignificant effect on
our results.

Note that, with these definitions, the velocity offset R
and spatial offset S are only valid for groups with three
or more members, and are not defined for galaxy pairs or
isolated galaxies.

3 APPLICATION TO THE SDSS

We first describe the SDSS galaxy group catalogue in Sec-
tion 3.1 and then the subset of galaxy groups used in our
analysis in Section 3.2.

3.1 Galaxy Group Catalogue

The analysis presented in this paper is based on the SDSS
galaxy group catalogue of Yang et al. (2007; hereafter Y07),
which is constructed by applying the halo-based group
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finder of Yang et al. (2005a) to the New York University
Value-Added Galaxy Catalog (NYU-VAGC; see Blanton et
al. 2005), which is based on the SDSS DR4 (Adelman-
McCarthy et al. 2006). From this catalogue Y07 selected
all galaxies in the Main Galaxy Sample (Strauss et al. 2002)
with an extinction corrected apparent magnitude brighter
than mr = 18, with redshifts in the range 0.01 ≤ z ≤ 0.20
and with a redshift completeness Cz > 0.7.

This sample of galaxies is used to construct three group
samples: sample I, which only uses the 362356 galaxies with
measured redshifts from the SDSS, sample II which also in-
cludes 7091 galaxies with SDSS photometry but with red-
shifts taken from alternative surveys1, and sample III which
includes an additional 38672 galaxies that lack a redshift
due to fiber collisions, but which we assign the redshift of
its nearest neighbor. The present analysis is based on the
galaxies in sample II with mr < 17.77, which consists of
344010 galaxies.

All the magnitudes and colours of the galaxies are Pet-
rosian, and they have been corrected for Galactic extinc-
tion (Schlegel, Finkbeiner & Davis 1998), and have been
k-corrected and evolution-corrected to z = 0.1 (Blanton &
Roweis 2007). Stellar masses for all galaxies are computed
using the relations between stellar mass-to-light ratio and
colour of Bell et al. (2003).

The geometry of the SDSS used for the group catalogue
is defined as the region on the sky that satisfies the redshift
completeness criterion. To account for the effects of the sur-
vey edges, Y07 used the SDSS DR4 survey mask with mock
galaxy redshift surveys to estimate the fraction of “missing”
members within the halo radius for each group. The group
luminosities and masses are corrected for this fraction, and
groups missing 40% or more of their members were excluded,
which removes only 1.6% of all groups.

As described in Y07, the majority of the groups in our
catalogue have two estimates of their dark matter halo mass:
one based on the ranking of its total characteristic luminos-
ity, and the other based on the ranking of its total character-
istic stellar mass, both determined from group galaxies more
luminous than Mr−5 log h = −19.5. As shown in Y07, both
halo masses agree very well with each other, with an aver-
age scatter that decreases from ∼ 0.1 dex at the low mass
end to ∼ 0.05 at the massive end. In this paper we adopt
the group masses based on the stellar mass ranking, but we
have checked that the luminosity ranking gives results that
are almost indistinguishable. The stellar mass based group
masses are available for a total of 215493 groups in our sam-
ple, which host a total of 277838 galaxies. This implies that
a total of 66172 galaxies have been assigned to a group for
which no reliable mass estimate is available (but see Yang,
Mo & van den Bosch 2009a).

3.2 Galaxy Groups used in this Paper

In what follows we restrict our analyses to the 7234 galaxy
groups in the sample II catalogue with three or more mem-

1 These redshifts are taken from the 2dFGRS (Colless et al.
2001), IRAS PSCz (Saunders et al. 2000), or RC3 (de Vau-
couleurs et al. 1991). See Blanton et al. (2005) for details.

bers, with 50km s−1 ≤ σ̂sat ≤ 1000km s−1, and with reliable
group masses greater than 1012 h−1 M⊙.

Because of the finite thickness of the spectroscopic fibers
used, the SDSS suffers from incompleteness due to fiber col-
lisions. No two fibers on the same SDSS plate can be closer
than 55 arcsec. Although this fiber collision constraint is
partially alleviated by the fact that neighboring plates have
overlap regions, ∼ 7 percent of all galaxies eligible for spec-
troscopy do not have a measured redshift. Since fiber colli-
sions are more frequent in regions of high (projected) den-
sity, they are more likely to occur in richer groups, thus
causing a systematic bias that may need to be accounted
for. Although Sample III tries to correct for this incom-
pleteness by assigning galaxies that lack a redshift due to
fiber collisions the redshift of its nearest neighbor, Zehavi et
al. (2002) have shown that in roughly 40 percent of cases,
the redshift thus assigned carries a large error. Hence, al-
though Sample II is more incomplete than Sample III, there
is less of a risk of interlopers, and the redshifts are accurate,
which is necessary for the analysis with galaxy line-of-sight
velocities. However, if the true brightest galaxy in a group is
missed due to a fiber collision, the velocity and spatial off-
sets R and S will be estimated relative to a satellite galaxy,
and will tend to be overestimated, resulting in a stronger
signal. To avoid this problem, we exclude groups in Sample
II in which the brightest galaxy is not also a brightest group
galaxy in Sample III.

This results in a sample of 6760 groups with Ngal ≥
3, excluding approximately 7% of the galaxy groups. This
constitutes our fiducial galaxy group sample.2 To be clear,
our fiducial sample simply consists of a subset of Sample II
groups. We emphasize that Sample III groups are not used in
our analysis; they are only used to remove those groups from
Sample II that may have been affected by fiber collisions.

In Fig. 1, we show the abundance of galaxy groups as a
function of richness in the catalogue, with M ≥ 1012h−1M⊙

and 50 km s−1 ≤ σ̂rmsat ≤ 1000 kms−1. The requirement
that the brightest group galaxy is also the brightest group
galaxy in Sample III results in slightly fewer groups at all
richnesses.

The analysis of vdB05 was done with a catalogue of 2502
groups in the 2dFGRS with four members or more; the new
Y07 catalogue has nearly twice as many groups with Ngal ≥
4 (4571), which is a significant improvement. In addition, the
typical rms redshift and magnitude errors of galaxies in the
SDSS are 30 kms−1 and 0.035 mag (r-band), respectively
(Strauss et al. 2002), compared to 85 kms−1 and 0.15 mag
(B-band) in the 2dFGRS (Colless et al. 2001). The improved
statistics of this SDSS DR4 group catalogue allow us to not
only investigate the halo mass dependence of central galaxy
velocity bias, but also the dependence of velocity bias on the
properties of the central galaxies themselves.

2 Using the additional criterion that the group masses in Samples
II and III are within 0.3 dex of each other excluded another 7%,
but yielded results that were indistinguishable from those based
on our fiducial sample.
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Figure 1. Galaxy group multiplicity function of SDSS Sample II.
Circle points show the number of groups as a function of group
richness, for groups with M ≥ 1012h−1 M⊙ and 50 km s−1 ≤
σ̂sat ≤ 1000 km s−1. Square points show Ngrp(Ngal) for groups
in which we additionally require that the central galaxy is also
the central galaxy of a group in Sample III. Horizontal error bars
indicate the width of each bin.

4 MOCK CATALOGUES

The main goal of this paper is to use the distributions of
the parameters R and S defined above to test our three
hypotheses related to the CGP defined in Section 1. As dis-
cussed above, since the SDSS galaxy group catalogue suffers
from interlopers and incompleteness effects, we require mock
group catalogues constructed from mock galaxy redshift sur-
veys (hereafter MGRSs) using the same halo-based galaxy
group finder as used for the SDSS.

We construct MGRSs by populating dark matter haloes
with galaxies of different luminosities. The distribution of
dark matter haloes is obtained from a set of large N-body
simulations (dark matter only) for the WMAP3 ΛCDM cos-
mology from Macciò et al. (2007). The simulations have 5123

particles each, have periodic boundary conditions, and box
sizes of Lbox = 100h−1 Mpc (hereafter L100) and Lbox =
300h−1 Mpc (hereafter L300). We follow Yang et al. (2004)
and replicate the L300 box on a 4× 4× 4 grid. The central
2×2×2 boxes, are replaced by a stack of 6×6×6 L100 boxes
(see Fig. 11 in Yang et al. 2004). This stacking geometry cir-
cumvents incompleteness problems in the mock survey due
to insufficient mass resolution of the L300 simulations, and
allows us to reach the desired depth of zmax = 0.20 in all
directions.

Dark matter haloes are identified using the standard
FOF algorithm with a linking length of 0.2 times the mean
inter-particle separation. Unbound haloes and haloes with
less than 10 particles are removed from the sample. The
resulting halo mass functions are in excellent agreement with
the analytical halo mass function of Sheth, Mo & Tormen
(2001).

4.1 Assigning Luminosities

We populate each halo with galaxies of different luminosities
using the conditional luminosity function (CLF) model de-
scribed in Cacciato et al. (2009; hereafter C09). The CLF,
Φ(L|M), specifies the average number of galaxies of lumi-
nosity L in a halo of mass M , and is constrained to accu-
rately match the SDSS r-band luminosity function (Blanton
et al. 2003), the clustering strength of SDSS galaxies as a
function of luminosity (Wang et al. 2007), and the galaxy-
galaxy lensing data of Mandelbaum et al. (2006). The CLF
assumes that the luminosity-dependent abundance, distribu-
tion, and clustering of galaxies can be described as a func-
tion of halo mass. The CLF of C09 is split in two parts,
Φcen(L|M) and Φsat(L|M), which describe the halo occupa-
tion statistics of central and satellite galaxies, respectively.

For each halo we draw the luminosity of its central
galaxy from Φcen(L|M), which is parameterized as a log-
normal distribution:

Φcen(L|M)dL =
1√

2π ln(10) σcen

exp

[

−
(

log(L/Lcen)√
2σcen

)2
]

dL

L
.

(7)
Here σcen = 0.14 quantifies the scatter between central
galaxy luminosity and host halo mass. More et al. (2009)
obtained a similar value from their analysis of satellite kine-
matics: σcen = 0.16 ± 0.04. The central galaxy luminosity
as a function of halo mass, Lcen(M) is parameterized as a
double power-law, with a slope of 3.3 in low-mass haloes and
0.26 in massive haloes (see C09 for details).

For the satellite galaxies we assume that their halo oc-
cupation numbers follow a Poisson distribution with mean

〈Nsat|M〉 =
∫

∞

Lmin

Φsat(L|M) dL , (8)

where we adopt a luminosity threshold, Lmin, corresponding
to Mr − 5 log h = −14. The satellite luminosities are drawn
from the satellite CLF Φsat(L|M), which is parameterized
as a modified Schechter function:

Φsat(L|M) =
φ∗
sat

L∗
sat

(

L

L∗
sat

)αsat

exp

[

−
(

L

L∗
sat

)s]

, (9)

where φsat and αsat are functions of halo mass, the param-
eter s = 2, and L∗

sat(M) = 0.562Lcen(M) (see C09 for de-
tails). We emphasize that this particular form for the CLF
(eqn. 7 and 9) is not an assumption, but rather is the form
that agrees with the CLF obtained directly from the SDSS
group catalogue (see Yang et al. 2008). The only poorly
constrained parameter is s, and we test the effect of its un-
certainty in Section 6.1.

If the luminosity of the satellite is brighter than that
of its central, a new luminosity is drawn until it is fainter
than that of the central. Hence, in our mock universe central
galaxies are always BHGs, by construction.

4.2 Assigning Phase-Space Coordinates

Having assigned all mock galaxies their luminosities, the
next step is to assign them a position and velocity within
their halo.

We assume that each dark matter halo of mass M has a
NFW (Navarro, Frenk & White 1997) density distribution,
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ρdm(r|M), with virial radius rvir(M), characteristic scale ra-
dius rs(M), and concentration parameter c(M) = rvir/rs.
We model the halo concentrations using the c(M) relation
of Macciò et al. (2007). Assuming haloes to be spherical
and isotropic, the local, one-dimensional velocity dispersion
follows from solving the Jeans equation

σ2
dm(r|M) =

1

ρdm(r|M)

∫

∞

r

ρdm(r′|M)
∂Ψ

∂r
(r′|M)dr′ (10)

with Ψ(r) the gravitational potential (Binney & Tremaine
1987). Using that ∂Ψ/∂r = GM(r)/r2 and defining the
virial velocity Vvir =

√

GM/rvir we obtain

σ2
dm(r|M) = V 2

vir
c

f(c)

(

r

rs

) (

1 +
r

rs

)2

I(r/rs) (11)

with f(x) = ln(1 + x)− x/(1 + x) and

I(y) =
∫

∞

y

f(τ ) dτ

τ 3(1 + τ )2
. (12)

The halo-averaged velocity dispersion is given by

〈σdm|M〉 ≡ 4π

M

∫ rvir(M)

0

ρdm(r|M) σdm(r|M) r2 dr

= Vvir

√

c

f3(c)

∫ c

0

y3/2 I1/2(y)

(1 + y)
dy (13)

(cf. van den Bosch et al. 2004).

4.2.1 Central Galaxies

For the central galaxies, we proceed as follows. In the case
of H0 and H2 mocks, we position the central galaxy at rest
at the centre of the dark matter halo (for the H2 mocks, we
then reshuffle the indices of central and brightest satellite,
as detailed below, but we do so only after the construction
of the group catalogue). In the case of the H1 mocks, we
follow the approach of vdB05, to which we refer the reader
for details. Briefly, we assume that the radial coordinate of
the central, r, follows a probability distribution3

Pcen(r)dr = 2

(

rvir + a

rvir

)2
ar

(r + a)3
dr , (14)

where a is a free parameter, which is related to the veloc-
ity bias bvel as detailed below. In order to parameterize the
characteristic radius a in terms of that of the dark matter
halo, we define the parameter fcen ≡ a/rs.

Central galaxies in a halo of mass M at a halo-centric
radius r have an isotropic velocity dispersion

σ2
cen(r|M) =

1

ρcen(r|M)

∫

∞

r

ρcen(r
′|M)

∂Ψ

∂r
(r′|M)dr′

= V 2
vir

c

f(c)

(

r

rs

) (

fcen +
r

rs

)3

J (r/rs) ,(15)

with

J (y) =

∫

∞

y

f(τ ) dτ

τ 3(fcen + τ )3
. (16)

3 The choice for this particular probability distribution, which
corresponds to a Hernquist (1990) profile, is not motivated by
any physical considerations, other than the fact that it is well
behaved, both at r = 0 and at r → ∞. Our results do not depend
significantly on the exact shape of this probability distribution.

Figure 2. The velocity bias (solid curve) and spatial bias (dashed
curve) of central galaxies as a function of the parameter fcen,
which expresses the characteristic scale of the radial distribution
of central galaxies in terms of the characteristic scale of the NFW
density distribution. The results shown correspond to a dark mat-
ter halo with a concentration c = 10.

This implies a halo-averaged velocity dispersion of

〈σcen|M〉 ≡
∫ rvir(M)

0
ρcen(r|M) σcen(r|M) r2 dr

∫ rvir(M)

0
ρcen(r|M) r2 dr

= Vvir

√

4c

f(c)
fcen

∫ c

0

y3/2 J 1/2(y)

(fcen + y)3/2
dy , (17)

which allows us to define the velocity bias of central galaxies
as

bvel ≡
〈σcen|M〉
〈σdm|M〉 =

〈σcen|M〉
〈σsat|M〉 . (18)

In addition to the velocity bias, we define the spatial bias as

brad ≡ 〈rcen|M〉
〈rdm|M〉 =

〈rcen|M〉
〈rsat|M〉 , (19)

where the expectation value for the radius follows from

〈r|M〉 =
∫ rvir
0

ρ(r)r3dr
∫ rvir
0

ρ(r)r2dr
(20)

For comparison, an NFW density distribution has 〈r|M〉 =
0.41rvir(M) for c = 10, and 0.47rvir(M) for c = 5.

With this model, a particular value of the parameter
fcen implies a particular amount of velocity and spatial bias.
The relations bvel(fcen) and brad(fcen) are shown in Figure 2.
These relations only depend weakly on halo concentration
(see vdB05). In the limit fcen → 0, the probability distri-
bution Pcen(r) becomes a delta function, implying that the
central galaxy is sitting at rest at the centre of the dark mat-
ter halo (i.e., the null-hypothesis H0 of the CGP). Larger
values of fcen result in larger amounts of velocity and spa-
tial bias. Note that bvel is always larger than brad, indicating
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that the signature of an off-centered central galaxy (i.e., hy-
pothesis H1) is more pronounced, and thus easier to detect,
in velocity space than in configuration space.

4.2.2 Satellite Galaxies

Throughout this paper, we assume that the Nsat satellite
galaxies in a halo of mass M follow a number density dis-
tribution nsat(r|M) = (Nsat/M)ρdm(r|M), so that there is
no spatial bias between satellite galaxies and dark mat-
ter particles. If we further assume that the satellites are
in isotropic equilibrium, it also follows that there is no ve-
locity bias between the satellites and the dark matter, nei-
ther globally [i.e., 〈σsat|M〉 = 〈σdm|M〉] nor locally [i.e.
σsat(r|M) = σdm(r|M)].

For simplicity, we assume that the satellites follow a
spherically symmetric spatial distribution with a velocity
distribution that is locally isotropic. Although this is a
clear oversimplification, as some galaxy groups and clus-
ters have anisotropic or aspherical distributions (e.g., Bailin
et al. 2008; Wang et al. 2008), we do not believe that it
strongly impacts our results. For example, the global ve-
locity dispersion (i.e., obtained from all satellites) of an
anisotropic system will be nearly identical to that of an
isotropic system with the same gravitational potential, since
both are governed by the virial equation. In other words,
anisotropy changes the local line-of-sight velocity distribu-
tion (LOSVD), but leaves the second moment of the global

LOSVD largely unchanged (see, e.g., van den Bosch et
al. 2004). Therefore, since the R parameter (eqn. 4) only de-
pends on the first and second moments of the global LOSVD,
our results are robust to the assumptions of isotropy and
sphericity. The cumulative R distribution is weakly depen-
dent on higher moments of the LOSVD, but again, the effect
of anisotropy is very small.

Although there is evidence to support our assumption
that satellite galaxies have number density distributions
that are well fit by a NFW profile (e.g., Lin et al. 2004),
the corresponding concentration parameters seem to be sig-
nificantly smaller than the values expected for their dark
matter haloes, by about a factor of 2 to 3 (e.g., Hansen et
al. 2005; Yang et al. 2005b). Since we assume that satellites
are unbiased with respect to the dark matter, our value for
bvel will be incorrect by a factor of 〈σsat〉/〈σdm〉. Using the
model described in Eqs (13) and (17), we estimate that this
may result in an underestimating of the velocity bias by no
more than 5%. Given that this is a small effect compared to
the other uncertainties involved in our analyses, we do not
attempt to correct for it.

4.3 Mock Group Catalogues

Once the dark matter haloes are populated with galaxies,
we construct a MGRS following the procedure described in
Li et al. (2007). We place a virtual observer at the cen-
tre of the stack of simulation boxes, assign each galaxy a
(α, δ)-coordinate, and remove the ones that are outside the
mocked SDSS survey region. For each model galaxy in the
survey region, we compute its redshift (which includes the
cosmological redshift due to the universal expansion, the
peculiar velocity, and a 35 kms−1 Gaussian line-of-sight ve-
locity dispersion to mimic the redshift errors in the data),

and its r-band apparent magnitude (based on the r-band
luminosity of the galaxy).

We eliminate galaxies that are fainter than the SDSS
apparent magnitude limit, and incorporate the position-
dependent incompleteness by randomly eliminating galax-
ies according to the completeness factors obtained from
the survey masks provided by the NYU-VAGC (Blanton et
al. 2005). Finally, we construct group catalogues from the
MGRSs, using the same halo-based group finder as used for
the real SDSS DR4.

Using the method outlined above, we construct the fol-
lowing set of mock group catalogues. The first is a set of
ten mocks that only differ in the value of the velocity bias
bvel = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.0. These
constitute our H1 mocks. Note that the mock with bvel = 0
satisfies the CGP, and therefore corresponds to the null-
hypothesis H0, while the other mocks correspond toH1 (i.e.,
BHG is central galaxy, but is not at rest at centre of dark
matter potential well). The second set of mock group cata-
logues is constructed starting from the bvel = 0 mock group
catalogue, in which we switch the luminosities of the cen-
tral and its brightest satellite for a random fraction fBNC

of all groups. We construct 6 mock group catalogues for
fBNC = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, respectively. These
constitute our H2 mocks.

In order to facilitate the comparison with the SDSS
galaxy group catalogue, in what follows we discard all mock
groups with an assigned group mass less than 1012h−1 M⊙,
and with a satellite velocity dispersion σ̂sat < 50 kms−1 or
σ̂sat > 1000km s−1. For the mock groups that have not been
discarded, we compute the parameters R and S . In the next
section, we compare the resulting distributions P (< |R|)
and P (< |S|) with those obtained from the SDSS group
catalogue in order to test our three hypotheses H0, H1, and
H2.

Finally, we note that the halo centres and central and
satellite galaxies are defined only in the mock group cata-
logues, not in the SDSS group catalogue. The R and S pa-
rameters used in the following analysis are defined with re-
spect to the BHGs in the mock and observed galaxy groups.
This way, we are able to statistically analyze groups of a
wide range in mass, including poor groups for which a cen-
tre or central galaxy might not be well-defined.

5 RESULTS

Fig. 3 shows the cumulative distributions of |R| (left panels)
and |S| (right panels) obtained from the H1 mocks (upper
panels) and the H2 mocks (lower panels) for groups with
four or more members (i.e., Nsat ≥ 3). As expected, P (|R|)
and P (|S|) become broader for larger values of bvel (upper
panels) and fBNC (lower panels). A few trends are appar-
ent. Firstly, note that the |S|-distributions are all bunched
together for bvel ≤ 0.5. Only for bvel > 0.5 are the cumu-
lative |S|-distributions notably different. This shows that it
is difficult to constrain bvel using the angular positions of
galaxies, on which the S-statistic is based, vis-à-vis using
the velocity-statistic R. Physically this is a reflection of the
fact that dark matter haloes have steep potential wells, so
that large velocities are required even for relatively modest
excursions from the centre. Secondly, and most importantly,
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Figure 3. The cumulative distributions of |R| (left panels) and
|S| (right panels) for the groups in mock group catalogues with
four members or more. Upper panels show the distributions for
mock catalogues with different amounts of bvel: the solid curves
are for bvel = 0, 0.1, 0.2, 0.3, and 0.4 (red, green, magenta,
cyan, and blue curves, respectively) and the dashed curves are
for bvel = 0.5, 0.6, 0.7, 0.8, and 1 (red, green, magenta, cyan, and
blue curves, respectively). Lower panels show the distributions for
mock catalogues with different fractions fBNC = 0, 0.1, 0.2, 0.3,
0.4, 0.5, and 0.6 (red, green, magenta, cyan, blue, dashed red, and
dashed green curves, respectively).

Halo Mass Bins logMmin logM logMmax Ngroup

low mass 12 12.86 13.3 1434
intermediate mass 13.3 13.53 13.75 1540
high mass 13.75 14.09 15.2 1555

Table 1. Halo mass bins (log(M/h−1 M⊙)) in the SDSS group
catalogue, for groups with four members or more and 50 km s−1 ≤
σ̂sat ≤ 1000 km s−1. The log mass ranges, mean masses, and
number of groups are given.

comparing the upper and lower panels, it is clear that a non-
zero value of fBNC has a different impact on P (< |R|) and
P (< |S|) than a non-zero value of bvel. This is good news, as
it implies that we will be able to discriminate between our
three hypotheses.

In what follows we will compare the cumulative |R| and
|S| distributions obtained from the SDSS with those ob-
tained from our mock catalogues. Since we have a relatively
large number of groups in our SDSS sample, we can per-
form this test for a (small) number of bins in group mass,
thus giving some leverage on a possible halo mass depen-
dence. At the massive end of the group mass distribution,
the group catalogue is roughly complete, and the mass distri-
bution closely follows the halo mass function. The constraint
of four or more group members, however, cuts off the dis-
tribution at the low mass end, leaving virtually no groups

with M < 1012h−1 M⊙. We split the SDSS group catalogue
in three mass bins (listed in Table 1) that contain a simi-
lar number (∼ 1500) of groups, and the corresponding mass
cuts occur at log(M/h−1 M⊙) = 13.3 and 13.75.

The results presented in Sections 5.1 and 5.2 are based
on groups with at least four members (i.e., with Nsat ≥ 3).
We have repeated these analyses using samples of groups
with three, five, six, and ten or more members. We have also
tested lower and higher halo mass thresholds. In each case we
obtain constraints on bvel and fBNC that are consistent with
each other at the 1σ level. Hence, our results do not depend
significantly on the multiplicity and halo mass thresholds
used.

5.1 Testing Hypothesis H1

In order to test hypothesis H1, we compare the SDSS group
catalogue to mock group catalogues with different values of
bvel while setting fBNC = 0. Figure 4a shows the cumulative
|R|-distribution for different bins of halo mass obtained from
the SDSS group catalogue (solid lines) and from three mock
group catalogues corresponding to different values of bvel
(0, 0.5, and 1). In all cases only groups with four members
of more are considered. The numbers in square brackets in
each panel indicate the range of log(M/h−1M⊙) considered.
Note that at fixed R, the corresponding P (< |R|) becomes
smaller when using a bin with larger group masses. This does
not necessarily imply a trend of bvel with halo mass, though.
It may also be due to a mass dependence of the fraction
of interlopers, or a mass dependence of the completeness
of group members. Indeed, the mock group samples for a
fixed value of bvel reveal the same trend, indicating that it
is most likely an artifact introduced by the group finder.
For each halo mass bin, the mock catalogue with bvel =
0 (i.e., the one that fulfills the null-hypothesis, H0, of the
CGP) predicts a |R|-distribution that is much narrower than
that of the SDSS, while the mock catalogue with bvel =
1 yields a distribution that is too broad. Interestingly, the
intermediate case, with bvel = 0.5, results in P (< |R|) that
are very similar to those of the SDSS, for each mass bin.
This rules out the null hypothesis H0, and seems to suggest
that instead central galaxies have a relatively large velocity
bias with 〈σcen|M〉 ≃ 0.5〈σsat|M〉 with little dependence on
halo mass M .

However, Fig. 4b, which is similar to Fig. 4a except that
it shows the cumulative |S|-distributions, paints a different
picture. Both the bvel = 0.0 and bvel = 0.5 mocks predict |S|-
distributions that are clearly too narrow, for each mass bin.
Rather, the SDSS |S|-distribution seems to require 0.5 <
bvel < 1.0. Hence, it appears that no single value of bvel can
simultaneously match P (< |R|) and P (< |S|) obtained from
the SDSS, ruling against our hypothesis H1. In other words,
although the BHGs have non-zero velocities, the velocity
spread is too small to explain their displacements from the
halo centres.

In order to make this more quantitative, we use the
Kolmogorov-Smirnov (hereafter KS) test to compute the
probabilities PKS that P (|R|) and P (|S|) of the SDSS and a
particular mock are drawn from the same distribution. The
results are shown in Fig. 5, which plots log(PKS) as function
bvel for each of the four mass bins considered. Using the me-
dian and the 16 and 84 percentiles of PKS(bvel) for the |R|
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Figure 4. The cumulative distribution of |R| (left figure) and |S| (right figure) obtained from the SDSS group catalog (solid black curve)
compared with those obtained from three of our mocks, with bvel = 0 (red dotted curve), 0.5 (blue short-dashed curve), and 1 (green
long-dashed curve), for groups with four members or more. Results are shown for four log halo mass intervals, as indicated in square
brackets in each panel.

Figure 5. The KS-probability that the cumulative R distribution
(solid lines) and S distribution (dashed lines) obtained from the
SDSS groups is consistent with that obtained from our mocks, as a
function of bvel. Results are shown for four log halo mass intervals,
indicated in square brackets in each panel. The horizontal dotted
line in each panel indicates PKS = 0.01: based on estimates of the
scatter due to cosmic variance, we consider two distributions to
be statistically equivalent when PKS > 0.01.

distributions (solid lines) we obtain bvel = 0.47+0.06
−0.07 for the

entire mass range, and bvel = 0.44+0.09
−0.07 , bvel = 0.50 ± 0.05,

and bvel = 0.43+0.08
−0.06 for the low-mass, intermediate-mass,

and high-mass intervals, respectively. For the |S| distribu-
tions (dashed lines) this yields bvel = 0.82+0.08

−0.06 for the low-
mass interval, and bvel = 0.83+0.08

−0.06 for the intermediate- and
high-mass intervals. Therefore, the amounts of velocity bias
consistent with the R and S distributions of SDSS groups
are significantly different, with their best-fit values of bvel
differing from each other by more than 4σ. We conclude
that hypothesis H1 is ruled out, since it cannot simultane-
ously explain the |R| and |S| distributions obtained from
the SDSS group catalogue.

5.2 Testing Hypothesis H2

Having ruled out bothH0 andH1, we now turn our attention
to hypothesis H2 and investigate whether there is a value of
fBNC for which the mock group catalogue yields |R|- and
|S|-distributions that are consistent with the SDSS data.
To that extent we compare the SDSS group catalogue to
mock catalogues with bvel = 0, but with different values of
fBNC. We proceed in the same way as for H1 in the previous
section: for each mock, which corresponds to a different value
of fBNC, we compute P (< |R|) and P (< |S|), which we
compare to the corresponding distributions obtained from
the SDSS, resulting in a value for PKS, the KS-probability
that the mock and SDSS distributions are consistent with
each other.

The results are shown in Fig. 6, where the solid and
dashed lines once again correspond to the R and S distribu-
tions, respectively. These KS probabilities are the means of
log(PKS) for 100 realizations with different random seeds.
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Figure 6. The KS-probability that the cumulative R distribution
(left figure) and S distribution (right figure) obtained from the
SDSS groups with four or more members is consistent with that
obtained from MGRSs, as a function of fBNC, the fraction of
groups in which the most luminous satellite is brighter than the
central galaxy (see text for details). The KS probabilities here are
the means of log(PKS) for 100 realizations with different random
seeds.

The solid lines show that the R distribution of SDSS
groups indicates a relatively large fraction of groups in
which the central galaxy is not the BHG, with fBNC in-
creasing from ∼ 0.25 in low mass haloes (1012h−1 M⊙ ≤
M <∼ 2× 1013h−1 M⊙) to ∼ 0.4 in massive haloes (M >∼ 5×
1013.75h−1M⊙). Interestingly, the KS probabilities obtained
from the S distributions shown by the dashed lines yield
best-fit values of fBNC that are very similar. Hence, we con-
clude that contrary to hypothesis H1, hypothesis H2 can
simultaneously match the P (< |R|) and P (< |S|) obtained
from the SDSS group catalogue.

Fig. 7 summarizes our results. It shows the best-fit val-
ues of bvel (upper panel) and fBNC (lower panel) as func-
tions of halo mass, as inferred from the |R|-distributions
(squares) and |S|-distributions (triangles) obtained from the
SDSS galaxy group catalogue. The figure clearly shows that
H2 (i.e., a non-zero fBNC) can simultaneously explain both
the velocities and the positions of BHGs with respect to
their satellites, while H1 (i.e., a non-zero bvel) is ruled out
because it cannot.

Considering the |R|- and |S|-distributions simultane-
ously, we infer best-fit values for the fraction of haloes
in which centrals are not BHGs of fBNC = 26+4

−6% for
12 ≤ log(M/h−1 M⊙) < 13.3, increasing to fBNC = 30+3

−4%
for haloes with 13.3 ≤ log(M/h−1 M⊙) < 13.75 and fBNC =
43+2

−3% in the most massive haloes with log(M/h−1 M⊙) ≥
13.75. As in Section 5.2, the best-fit values and uncertain-
ties are determined from the median and the 16 and 84 per-
centiles of the PKS(fBNC) distributions.

Before proceeding with a discussion regarding the im-

Figure 7. Halo mass dependence of bvel (upper panel) and fBNC

(lower panel), inferred from the |R|-distributions (squares) and
|S|-distributions (triangles) obtained from the analyses of the
SDSS group catalogue (see text for details). For the results in
the upper panel, the mock catalogues had different values of bvel
and fBNC = 0; for the lower panel, the mocks had different values
of fBNC and bvel = 0. Points show best-fit values of the parame-
ters estimated from the KS probabilities, vertical error bars show
1-σ uncertainties from the 16 and 84 percentiles of the PKS dis-
tributions, and horizontal error bars indicate the widths of the
mass bins. Hypothesis H1 is clearly ruled out from the fact that
the R-data data implies a velocity bias, bvel, that is inconsistent
with the value inferred from the S-data.

plications of these findings, we briefly address the possibility
that both H1 and H2 are true; BHGs are not central galax-
ies in a non-zero fraction fBNC of all haloes, and central
galaxies have a non-zero value for their velocity bias bvel.
Using mock group catalogues with non-zero values for both
fBNC and bvel we estimate that the data can accommodate
a small amount of velocity bias bvel <∼ 0.2. We emphasize,
though, that the data do not require a non-zero bvel.

5.3 The Impact of Substructure

In the tests described above, we have always assumed that
satellite galaxies follow a smooth, spherically symmetric,
number density distribution, and we assigned the satellites
peculiar velocities within its host halo under the assumption
that the corresponding potential is smooth. This ignores the
fact that dark matter haloes are believed to have a wealth of
substructure (see Giocoli et al. 2010, and references therein;
on substructure in galaxy clusters, see Richard et al. 2010).
Satellite galaxies are believed to be associated with these
substructures. Our treatment of the spatial and kinematic
properties of satellite galaxies is only consistent with this
concept of substructure if: (i) each subhalo hosts at most
one satellite, and (ii) the positions and velocities of sub-
haloes are not correlated with those of other subhaloes. In
reality, neither of these criteria is likely to be met. Massive
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subhaloes are likely to host multiple satellites, and the large
scale filamentary structure is believed to introduce (weakly)
correlated directions of infall for subhaloes (e.g., Vitvitska et
al. 2002; Aubert, Pichon & Colombi 2004; White et al. 2010).
Both of these effects result in correlations among the posi-
tions and/or velocities of different satellite galaxies within
the same host halo, which is likely to have an impact on the
R and S statistics.

In order to have a crude estimate of the impact of
substructure, we proceed as follows. We start by popu-
lating 1000 (virtual) dark matter haloes, all with M =
3 × 1014h−1 M⊙, with galaxies using the same CLF model
as in Section 4. Similar to the H0 mocks, we assure that
the central galaxy is always the brightest galaxy in the halo,
and we position it at rest at the centre of the halo. We
then compute S and R for each of these haloes. The black,
solid lines in Fig. 8 indicate the corresponding P (< |R|)
and P (< |S|). Next we repeat this exercise, but now, in
each halo, a fraction fsub of all satellites is ‘clumped’ to-
gether in a single substructure. We model this substructure
as a halo of mass m = fsubM (i.e., we assign the galax-
ies in this subhalo phase-space coordinates in exactly the
same way as we would if the halo was a ‘host’ halo of the
same mass). The phase-space coordinates of the centre of
the subhalo are drawn in the same way as the phase-space
coordinates of the satellites that are not in a substructure.
The long-dashed green curves, short-dashed blue curves, and
dotted red curves in Fig. 8 show the P (< |R|) and P (< |S|)
thus obtained for fsub = 1/3, 1/5, and 1/10, respectively.
A comparison with the no-substructure case (black, solid
line) shows that substructure significantly affects the R and
S distributions, and hence our conclusions, if all dark mat-
ter haloes have a most massive substructure whose mass is
msub

>∼ 0.1M . In particular, if many haloes contain substan-
tial substructure, then an alternative explanation for the fact
that our fiducial model (which follows the CGP) does not
match the data may be that the phase-space coordinates
of satellite galaxies within the same dark matter host halo
are correlated. In that case the fractions fBNC obtained in
Section 5.2 will be significantly overestimated.

However, using the subhalo mass functions of Giocoli
et al. (2010), we estimate that only ∼ 8% of host haloes
with M = 3 × 1014h−1 M⊙ have a most massive subhalo
with fsub = m/M ≥ 0.1, while only ∼ 0.7 percent have a
most massive subhalo with m/M ≥ 0.3. Based on these es-
timates, and on the tests described above, we argue that ig-
noring substructure when populating haloes with (satellite)
galaxies does not have a significant impact on the R and
S statistics, though more sophisticated tests are required
to confirm this. Therefore, we conservatively argue that the
fBNC fractions obtained in this paper have to be regarded
as upper limits.

6 DISCUSSION

The results presented in the previous section suggest that
in as much as 25 to 40 percent of all haloes, the bright-
est galaxy is a satellite rather than a central galaxy. In or-
der to put these numbers in perspective, we compare them
to predictions from halo occupation statistics (Section 6.1)
and from two semi-analytical models of galaxy formation

Figure 8. Cumulative distributions of |R| (left panels) and |S|
(right panels) of 1000 mock haloes with M = 3 × 1014h−1 M⊙

populated with galaxies. Black solid curves indicate the distribu-
tions for haloes with no substructure, while the long-dashed green
curves, short-dashed blue curves, and dotted red curves indicate
the distributions for fsub = 1/3, 1/5, and 1/10, respectively. Re-
sults are shown for the case in which all haloes have substructure
(upper panels) and 10% of the haloes have substructure (lower
panels).

(Section 6.2). We also investigate the impact of non-zero
fBNC(M) on the halo masses inferred using satellite kine-
matics (Section 6.3).

6.1 Comparison with Halo Occupation Statistics

Using the SDSS r-band luminosity function of Blanton et
al. (2003), the projected two-point correlation functions of
Wang et al. (2007), and the galaxy-galaxy lensing data of
Mandelbaum et al. (2006), C09 constrained the halo occu-
pation statistics as parameterized by the conditional lumi-
nosity function (CLF)

Φ(L|M) = Φcen(L|M) + Φsat(L|M) , (21)

which is found to be in good agreement with direct con-
straints from the Y07 group catalogue (Yang, Mo & van
den Bosch 2008, 2009a) and with constraints from satellite
kinematics (More et al. 2009). We have used this CLF model
in Section 4.1 to construct our mock group catalogues, ex-
cept that we imposed that the central galaxy is always the
BHG; if a satellite luminosity was drawn from Φsat(L|M)
that was brighter than the central luminosity, drawn from
Φcen(L|M), it was rejected. Later, we then switched the lu-
minosities of the central and that of its brightest satellite in
a fraction fBNC of all groups. We now use the CLF to ‘pre-
dict’ the fraction fBNC as function of halo mass, by making
the assumption that the luminosities of satellite galaxies are
independent of the luminosity of the central galaxy in the
same halo. In that case, the probability that a random satel-
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lite galaxy in a halo of mass M has a luminosity smaller than
that of its central is simply given by

P (Lsat < Lcen|M) = (22)
∫

∞

0

∫ Lcen

Lmin

Φsat(L|M) dL
∫

∞

Lmin

Φsat(L|M) dL
Φcen(Lcen|M) dLcen ,

where the integral accounts for the scatter in the relationship
between central galaxy luminosity and halo mass, and Lmin

is the minimum luminosity considered. In a halo with Nsat

satellites, the probability that the central galaxy is also the
brightest galaxy is simply [P (Lsat < Lcen|M)]Nsat . Hence,
we obtain that

fBNC(M) = 1−
∞
∑

Nsat=1

P (Nsat|M) [P (Lsat < Lcen|M)]Nsat

(23)
where P (Nsat|M) gives the probability that a halo of mass
M contains Nsat satellites, which we take to be a Poisson
distribution whose mean is given by Eqn. (8). The results
thus obtained from the CLF of C09 are shown as a solid
line in Fig. 9. For comparison, the solid triangles with er-
ror bars are the constraints on fBNC(M) obtained from the
SDSS group catalogue as described in the previous section.
Although the CLF predicts that fBNC increases with increas-
ing halo mass, in qualitative agreement with the data, the
values of fBNC(M) inferred from the data are much larger
than those ‘predicted’ by the CLF. Note that the CLF pre-
diction is for all haloes, rather than for haloes (or groups)
with Nsat ≥ 3, which is the richness threshold used in our
analysis of SDSS groups. However, this has little to no im-
pact. We have verified that our constraints on fBNC do not
change significantly if we use a different richness threshold.
Furthermore, from the CLF, the probability of a halo host-
ing fewer than three galaxies is low for most of the mass
range considered here: P (Nsat < 3) > 0.05 only for haloes
with log M < 12.75.

There are a number of possible explanations for why
the CLF prediction is not consistent with the data. First
of all, we emphasize that the CLF is not designed to ‘pre-
dict’ fBNC(M). Most of the statistics used to constrain the
CLF depend only very weakly (clustering and lensing) or
not at all (luminosity function) on fBNC(M). Secondly, it
is still possible that the CLF is correct, but that the addi-
tional assumption that the satellite luminosity is indepen-
dent of the luminosity of the central is not correct, that is,
Φsat(Lsat|M,Lcen) 6= Φsat(Lsat|M). This could come about,
for example, because of galactic ‘cannibalism’: those haloes
in which the central has recently cannibalised a bright satel-
lite will have an excessively bright central, and are less likely
to have a bright satellite. It remains to be seen whether
a model for Φsat(Lsat|M,Lcen) can be found that yields a
fBNC(M) in better agreement with the data, and simulta-
neously obeys the CLF constraint that

Φsat(Lsat|M) =

∫

Φsat(Lsat|M,Lcen) Φcen(Lcen|M) dLcen .

(24)
Of course, it is also possible that the discrepancy re-

flects an actual failure of the CLF. One possible modifica-
tion, which will have little impact on the luminosity func-
tion, clustering, galaxy-galaxy lensing, and mock group cat-
alogues, is a modification in the shape of Φsat(L|M) (eqn. 9)

Figure 9. Probability that the most luminous satellite galaxy is
brighter than the central galaxy in a halo, as a function of halo
mass (Eqn. 23). Result is shown for three slopes in the satel-
lite CLF (Eqn. 9): s = 1 (dotted curve), the fiducial s = 2
(solid curve), and s = 3 (dashed curve). For comparison, the
fBNC(Mhalo) result from Figure 7 (solid triangle points) is also
shown. The predictions from the morgana semi-analytic model
(open triangles) and Croton et al. (2006) semi-analytic model
(open squares) are also shown, with Poisson errors.

at the bright end. As mentioned in Section 4.1, C09 adopted
a functional form for which Φsat(L|M) ∝ exp [−(L/L∗

sat)
s]

at the bright end, with s = 2. The exact value of s, though, is
poorly constrained by the data, but has a significant impact
on fBNC(M). This is illustrated by the dotted and dashed
curves in Fig. 9, which correspond to s = 1 and s = 3,
respectively. Clearly, decreasing s increases the expectation
value for the luminosity of the brightest satellite, and hence
the fraction of haloes for which the central galaxy is not
the BHG. For s = 1 the CLF ‘predicts’ a fBNC(M) in good
agreement with the data, but only for M >∼ 5×1013h−1M⊙.
For less massive haloes, the value of fBNC inferred from the
SDSS group catalogue is still too high compared to the CLF
prediction, but only by about 2σ.

Another parameter that has a significant impact on
fBNC(M) is the ratio Q ≡ L∗

sat/Lcen. Motivated by the
CLF inferred from the SDSS group catalogue by Yang et
al. (2008), C09 adopted Q = 0.562, with no dependence
on halo mass. However, Hansen et al. (2009), using the
maxBCG group catalogue of Koester et al. (2007), found
that Q depends on halo mass and may be as small as ∼ 0.15
for M ∼ 1014h−1M⊙. In order for the CLF to yield fBNC(M)
in rough agreement with our findings, though, we need a
value of Q that is larger than 0.562, (i.e., for s = 2 we
require Q ∼ 0.7). These results warrant a more thorough
investigation into the exact values of s and Q as function of
halo mass.

Finally, we have verified that the CLF predictions for
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fBNC(M) do not depend significantly on our choice for the
lower luminosity cut-off, Lmin.

6.2 Comparison with Semi-Analytical Models

We now compare our results to the predictions of two semi-
analytical models (SAMs) of galaxy formation; the MOR-
GANA model of Monaco, Fontanot & Taffoni (2007), as up-
dated by Lo Faro et al. (2009), and the SAM of Croton et
al. (2006).

Both SAMs adopt flat ΛCDM cosmologies, albeit with
slightly different values for the cosmological parameters4.
Although both SAMs include treatments of cooling, star for-
mation, feedback from supernovae and active galactic nuclei,
mergers, starbursts and disk instabilities, the actual imple-
mentations of these physical processes are substantially dif-
ferent (see the original papers for details). Yet, as shown in
Fig. 9 (open symbols), they predict fairly similar values for
fBNC(M). 5 In qualitative agreement with the data, both
SAMs predict that fBNC increases with halo mass. In addi-
tion, from studying the satellite BHGs in the MORGANA
model, we find that the majority of the more massive satel-
lites represent a recently (since z ∼ 0.2) accreted population,
in most cases linked to the last major merger experienced
by the host halo. In other words, infalling massive satellites
could be a contributing cause of a nonzero fBNC.

As with the halo occupation statistics, the predictions of
both models are significantly lower than the data. In both
SAMs, satellite galaxies are ‘strangulated’ after being ac-
creted by their host galaxies, so that they do not partici-
pate in the cooling flow of their parent halo. However, it
has been pointed out that the standard, instantaneous im-
plementation of this strangulation causes an over-quenching
of satellite galaxies (e.g., Baldry et al. 2006; Weinmann et
al. 2006; Kimm et al. 2009). It has been suggested that this
over-quenching problem can be avoided by adopting a longer
time-scale for strangulation (e.g., Kang & van den Bosch
2008; Font et al. 2008; Weinmann et al. 2009). This is likely
to allow satellite galaxies to continue forming stars for some
period, which will increase their stellar mass, and thus also
fBNC. The effect, though, is likely to be small. Another effect
that may cause the SAMs to underpredict fBNC is the fact
that they often adopt dynamical friction time-scales that
are too short (Boylan-Kolchin et al. 2008; Wetzel & White
2010). This results in (massive) satellites being accreted too
rapidly, and hence in an underestimate of fBNC. Finally,
the models don’t take proper account of stellar mass strip-
ping due to tidal forces, which will make satellites less mas-
sive. As emphasized in a number of recent papers, this tidal
stripping of satellite galaxies is an important ingredient of
galaxy formation (Monaco et al. 2006; White et al. 2007;
Conroy, Ho & White 2007; Conroy, Wechsler & Kravtsov
2007; Kang & van den Bosch 2008; Yang, Mo & van den
Bosch 2009b; Pasquali et al. 2010). It remains to be seen

4 We do not believe that these small differences will have a sig-
nificant impact on the predictions of fBNC(M).
5 As in our analysis of SDSS galaxy groups, the predictions of
fBNC(M) from the SAMs are the fractions of haloes in which a
satellite galaxy is the most luminous galaxy. The SAMs’ predic-
tions are almost exactly same for the fractions of haloes in which
a satellite is the most massive galaxy (in terms of stellar mass).

to what extent these additions and/or modifications of the
semi-analytical models impact fBNC(M). For the moment,
we conclude that the fBNC(M) inferred from our analysis
of SDSS galaxy groups is uncomfortably high compared to
predictions from both halo occupation statistics and from
semi-analytical models of galaxy formation.

6.3 Implication for Satellite Kinematics

Studies that attempt to infer the masses of dark matter
haloes using the kinematics of satellite galaxies always as-
sume that the CGP is valid (e.g., Zaritsky et al. 1993; McKay
et al. 2002; van den Bosch et al. 2004; More et al. 2009).
Since a typical central only has a few satellites, one nor-
mally stacks many centrals together in order to obtain suf-
ficient signal-to-noise to measure a reliable satellite velocity
dispersion, σsat. With sufficiently large galaxy redshift sur-
veys, one can measure σsat as a function of the luminosity (or
stellar mass) of the central galaxies (i.e., one stacks centrals
in narrow bins in luminosity or stellar mass).

Consider a halo with Nsat satellites with velocities vsat,i
with respect to halo centre, and let the central be stationary
at the centre of the halo (i.e., vcen = 0). The satellite velocity
dispersion measured with respect to the central is:

σ2
true =

1

Nsat

Nsat
∑

i=1

v2sat,i . (25)

Without loss of generality, assume that satellite number 1 is
misidentified to be the central. The measured velocity dis-
persion in this case will be:

σ2
meas =

1

Nsat

[

Nsat
∑

i=2

(vsat,i − vsat,1)
2 + (vcen − vsat,1)

2

]

(26)

The first term sums over the remaining Nsat − 1 true satel-
lites, while the last term is the contribution from the true
central. Using that 〈vsat,i〉 = 0, and that 〈vcen〉 = 〈v2cen〉 = 0,
it is easy to show that the velocity dispersion measured from
a stack of many systems, each with Nsat satellites, is equal
to

σ2
meas

σ2
true

= 1 + fBNC (1−N−1
sat ) , (27)

where fBNC is the fraction of systems in which the central
is misidentified. Note that when the number of satellites per
central is one, the measured velocity dispersion is identical
to the true one, independent of fBNC, that is, the fact that
some satellites are misidentified as centrals has no impact
on the inferred satellite kinematics.6 However, in the limit
Nsat → ∞, one has that σmeas =

√
1 + fBNCσtrue. Since the

inferred halo mass M ∝ σ3
sat, this implies that the mass of

the halo will be overestimated by a factor (1+fBNC)
3/2. Note

that Eqn. (27) is strictly valid only for stacks of systems that
all have the same number of satellites. In reality, however,
there will be scatter in the number of satellites per host in
the stack. In what follows we assume that we do not make
a large error if we adopt Eqn. (27) but with Nsat replaced
by the average number of satellites per central, 〈Nsat〉.

6 This statement ignores the fact that a non-zero fBNC also im-
pacts the interpretation of the stacking parameter (i.e., the lumi-
nosity of the alleged ‘centrals’) and may result in more interlopers.
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Figure 10. Fraction fBNC of haloes in which the brightest galaxy
is not the central one, as a function of the luminosity of the bright-
est halo galaxy. The solid line shows fBNC(LBHG) for the ‘ran-
dom’ mocks, and the dotted line shows the fraction for the ‘condi-
tional’ mocks, in which whether a halo has a satellite brighter than
the central is conditional on the luminosity of the central galaxy.
The luminosities correspond to r-band absolute magnitudes, such
that logL = 9.5 corresponds to Mr ≈ −19, and logL = 10.3 to
Mr ≈ −21, etc.

For relatively faint centrals, 〈Nsat〉 ≃ 1, and σmeas ≃
σtrue independent of the value of fBNC. However, at the
bright end 〈Nsat〉 becomes substantially larger than unity,
and a non-zero fBNC may cause a significant overestimate
of the true σsat. For example, in their analysis of satellite
kinematics, More et al. (2009) have 〈Nsat〉 ∼ 10 for their
brightest host bins. If fBNC for these bins is comparable to
fBNC(M) at the massive end, (i.e., fBNC ∼ 0.4), their in-
ferred halo masses around bright host galaxies will be over-
estimated by a factor ∼ 1.6.

However, since the halo mass luminosity relation for
central galaxies is not one-to-one, it is not trivial to in-
fer fBNC for a certain bin in host galaxy luminosity, Lhost,
from fBNC(M). In fact, one can construct mocks in which
fBNC(Lhost) is very small at the bright end, even when
fBNC(M) is large at the massive end, by making the criterion
for a halo having a satellite brighter than the central condi-
tional on the luminosity of the central galaxy. We illustrate a
particular case of this in Fig. 10, where we show fBNC(LBHG)
for two types of mocks that have identical fBNC(M) = 0.4.
These are constructed as follows. We start by populating
the dark matter haloes in our 100h−1 Mpc simulation box
described in Section 4 with galaxies of different luminosities
using the CLF of C09 (see Section 4.1 for details). If the
luminosity of a satellite is brighter than that of its central,
a new luminosity is drawn until it is fainter than that of
the central, so that fBNC = 0. For the first set of mocks, we
switch the luminosities of the central and that of its bright-
est satellite in a random fraction of 40 percent of all haloes,
and we measure the resulting fBNC(LBHG). We refer to these

as the ‘random’ mocks. The mean and scatter obtained from
ten realizations are shown as the solid line in Fig. 10. As ex-
pected, fBNC(LBHG) ≃ 0.4, independent of LBHG. For the
second set of mocks, we again start from the mocks with
fBNC = 0, but we now switch the luminosities of brightest
satellite and central in those haloes that meet the criterion

∫ Lcen

0

Φcen(L|M)dL < 0.4 , (28)

that is, in those haloes in which the luminosity of the central
falls in the lower 40 percentile of its distribution, Φcen(L|M).
We refer to these as the ‘conditional’ mocks, and similar to
the ‘random’ mocks they thus have fBNC(M) = 0.4. Yet,
their fBNC(LBHG), indicated by the dotted curve in Fig. 10,
are very different: they decrease from ∼ 0.4 at the faint
end to almost zero at the bright end. Hence, if the proba-
bility that a central is not the BHG is conditional on the
luminosity of the central, which seems to be a reasonable
assumption, then even a relatively large fBNC(M) may have
negligible impact on the halo masses inferred from satellite
kinematics.

We thus conclude that a proper assessment of the im-
pact of a non-zero fBNC(M) on the halo masses inferred from
satellite kinematics requires an independent assessment of
the fraction fBNC as function of the luminosities of the host
galaxies.

7 CONCLUSIONS

It is generally assumed that the central galaxy in a dark
matter halo, that is, the galaxy with the lowest specific po-
tential energy, is also the brightest halo galaxy (BHG) and
that it resides at rest at the centre of the dark matter poten-
tial well. This central galaxy paradigm (CGP) is an essential
assumption made in various fields of astronomical research
(e.g., satellite kinematics, gravitational lensing, both weak
and strong, halo occupation modelling).

In this paper, we have used a large galaxy group cata-
logue, constructed from the SDSS DR4 by Yang et al. (2007),
in order to test the validity of the CGP. For each group we
compute two statistics, R and S , which quantify the off-
sets of the line-of-sight velocities and projected positions of
brightest group galaxies relative to the other group mem-
bers. By comparing the cumulative distributions of |R| and
|S| to those obtained from detailed mock group catalogues,
we have tested the null-hypothesis, H0, that the CGP is cor-
rect; hypothesis H1, according to which central galaxies are
BHGs but have a non-zero velocity with respect to the halo
centre, parameterized by a non-zero velocity bias, bvel; and
hypothesis H2, according to which central galaxies reside at
rest at the centre of the halo’s potential well, but are not
the BHGs in a fraction fBNC of all haloes.

In agreement with vdB05, who only used the R statis-
tic, we show that the null-hypothesis is strongly ruled out.
However, contrary to vdB05, who argued that the data are
consistent with a non-zero bvel, we show that H1 fails to si-

multaneously match the |R| and |S| distributions7. Rather,

7 Since vdB05 did not consider the spatial offsets (i.e., the S
statistic), they were unable to notice this problem for the H1

hypothesis.
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we have shown that the data is consistent with hypothe-
sis H2, indicating that BHGs are not central galaxies in
a non-negligible fraction of all haloes; in particular, we
find that fBNC increases from ∼ 0.25 in low mass haloes
(1012h−1 M⊙ ≤ M <∼ 2 × 1013h−1 M⊙) to ∼ 0.4 in massive
haloes (M >∼ 5× 1013h−1 M⊙).

Considering combined models, in which BHGs are not
central galaxies in a non-zero fraction fBNC of all haloes, and
central galaxies have a non-zero value for their velocity bias
bvel, we find that the data can at most accommodate a small
amount of velocity bias (bvel <∼ 0.2). We emphasize, though,
that a non-zero velocity bias is not required by the data (see
vdB05 for a discussion of possible physical explanations for
a non-zero bvel).

Our main result is that the fraction fBNC is significant
and increases with halo mass. Since some authors have as-
sumed that the most luminous (or most massive) galaxy in
a system is the central galaxy, our result that fBNC is some-
what large in galaxy groups and larger (43+2

−3%) in more
massive clusters may seem surprising. Nevertheless, our re-
sults are consistent with other studies. For example, von
der Linden et al. (2007) find that in 343 of their 625 clus-
ters (≈ 55%), the identified BCG is not the ‘mean’ galaxy
(which lies at the centre of the cluster’s density field). Co-
ziol et al. (2009) find that in about half of their 452 clusters,
the BCGs have a median peculiar velocity greater than one
third of their clusters’ velocity dispersion. Finally, in the Lo-
cal Group, although the Milky Way and Andromeda both
have their own systems of satellites, they could be considered
part of a single group, in which Andromeda would be iden-
tified as the BHG (van den Bergh 1999). The two galaxies
are expected to eventually merge, although neither is clearly
the ‘central’ galaxy.

In order to put our constraints on fBNC(M) in per-
spective, we have compared them to predictions from
semi-analytical models (SAMs) for galaxy formation and
from halo occupation statistics. Both the SAM of Cro-
ton et al. (2006) and that of Lo Faro et al. (2009)
predict 0.1 <∼ fBNC

<∼ 0.2 in the halo mass range of
1013h−1 M⊙

<∼ M <∼ 1015h−1 M⊙, significantly lower than
the fBNC(M) inferred here from our SDSS galaxy group cat-
alogue.

We can also use the CLF model of C09 to predict
fBNC(M), if we assume that the luminosity of a satellite
galaxy is independent of the luminosity of its correspond-
ing central. Although the C09 halo occupation model ac-
curately matches the SDSS r-band luminosity function of
Blanton et al. (2003), the projected two-point correlation
functions of Wang et al. (2007), and the galaxy-galaxy lens-
ing data of Mandelbaum et al. (2006), this model also pre-
dicts a fBNC(M) that is far too low. We have shown that
one can increase the predicted fBNC(M) using some small
modifications of the CLF, but it remains to be seen how
these modifications impact the clustering and lensing pre-
dictions. For completeness, we emphasize that halo occu-
pation models based on the abundance-matching method
(e.g., Vale & Ostriker 2004; Conroy, Wechsler & Kravtsov
2006, 2007; Shankar et al. 2006; Guo et al. 2010; Moster
et al. 2010) ‘predict’ that fBNC = 0, by construction, un-
less they assume a non-zero scatter in the relation between
central galaxy luminosity and halo mass. Typically a larger
amount of scatter will imply a larger fBNC. It remains to

be seen whether the amount of scatter required to match
the fBNC(M) inferred here is consistent with independent
constraints, such as those obtained from satellite kinematics
(More et al. 2009). All in all, we conclude that the con-
straints on fBNC(M) obtained in this paper are uncomfort-
ably high compared to predictions from galaxy formation
models and halo occupation statistics. One possible expla-
nation may be that dark matter haloes have substructure,
something that we have ignored in our analysis. Although
simple tests suggest that the correlations in the phase-space
parameters of satellite galaxies due to substructure are not
strong enough to significantly impact our conclusions, we
caution that more detailed studies are required to confirm
this.

Our results have important implications for various ar-
eas in astrophysics. In particular, we have shown that a non-
zero fBNC may cause an overestimate of halo masses inferred
from satellite kinematics. Although the effect is expected to
be negligible for faint host galaxies, because they typically
only have of the order of one satellite per host, the overes-
timate can be significant at the bright end. The exact im-
pact, though, depends on the fraction fBNC as function of
the host luminosity, which may be very different from that
as a function of halo mass. For example, if BHGs are not
centrals in the fraction fBNC(M) of haloes of mass M that
host the faintest centrals, then fBNC(L) drops towards zero
at the bright end, and the impact on satellite kinematics is
negligible.

Additional methods and analyses that may be affected
by a non-zero fBNC are the following:

• The inference of halo masses from weak gravitational
lensing. Similar to satellite kinematics, weak lensing studies
often rely on stacking the lensing signals of many clusters
and groups binned by mass-correlated observables such as
richness and luminosity. When interpreting such data, it is
generally assumed that BHGs coincide with the centres of
the dark matter haloes (e.g., Mandelbaum et al. 2006; John-
ston et al. 2007; Sheldon et al. 2009a,b; Corless & King 2009;
C09). Since satellite galaxies yield a different lensing signal
than centrals, at least on small to intermediate scales (see
e.g., Yang et al. 2006), a non-zero fBNC may have a signif-
icant impact on the lensing signal (Johnston et al. 2007),
by resulting in underestimates of the richnesses and lensing
profiles, for example. C09 used the CLF described in Sec-
tion 4.1 to model the galaxy-galaxy lensing signal of Man-
delbaum et al. (2006). As shown in Section 6.1, this CLF
predicts fBNC(M) significantly lower than inferred here. It
remains to be seen to what extent this may effect their in-
terpretation of the lensing data.

• Analyses of the power spectrum of luminous red galax-
ies (Tegmark et al. 2006; Reid et al. 2010), which can be
used to constrain cosmological parameters. In tests with
mock galaxy catalogues, Reid et al. (2010) find that a
fraction fBNC of 0.2-0.4 results in an angle-averaged LRG
power spectrum that is damped by 2 − 4% on scales of
k ∼ 0.1hMpc−1, and the effect is larger at larger k. However,
when analyzing the observed power spectrum with these
mock catalogues, the effect of fBNC on the recovered cos-
mological parameters is relatively small.

• Measurements of the radial number density distribution
of satellite galaxies, nsat(r|M), in haloes of mass M . Sev-
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eral studies that have measured nsat(r|M) using groups and
clusters have assumed that the halo centre coincides with
the location of the BHG (e.g., Carlberg, Yee & Ellingson
1997; Collister & Lahav 2005; Hansen et al. 2005; Yang et
al. 2005b). If, instead, the BHG is a satellite galaxy, this will
result in an underestimate of the concentration of nsat(r).
Hence, a non-zero fBNC(M) may cast doubt on the claim,
made by several of these studies, that satellite galaxies are
less centrally concentrated than the dark matter. On the
other hand, Lin, Mohr & Stanford (2004) used the centre
of the X-ray emission as the centre of the dark matter halo,
rather than the location of the BHG, and came to a similar
conclusion.

• Comparisons of the properties of central and satellite
galaxies. A number of recent studies have used galaxy group
catalogues to split the galaxy population into centrals and
satellites, and to compare their properties (e.g., Weinmann
et al. 2006, 2009; Skibba et al. 2007; van den Bosch et
al. 2008; Pasquali et al. 2009, 2010; Hansen et al. 2009;
Kimm et al. 2009; Skibba 2009; Guo et al. 2009). Since all
of these studies have assumed the brightest group galaxy to
be the central galaxy, they are likely to have underestimated
the true differences (i.e., a non-zero fBNC blurs the actual
differences between centrals and satellites).
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Lauer, Alexie Leauthaud, Pierluigi Monaco, Beth Reid,
Maria Pereira, Simone Weinmann, and Ann Zabludoff for
valuable discussions about our results and their implications.
Some of the calculations were carried out on the PIA cluster
of the Max-Planck-Institute für Astronomie at the Rechen-
zentrum Garching.

REFERENCES

Adelman-McCarthy J. K. et al., 2006, ApJS, 162, 38
Aubert D., Pichon C., Colombi S., 2004, MNRAS, 352, 376
Bailin J., Power C., Norberg P., Zaritsky D., Gibson B. K., 2008,

MNRAS, 390, 1133
Baldry I. K., Balogh M. L., Bower R. G., Glazebrook K., Nichol

R. C., Bamford S. P., Budavari T., 2006, MNRAS, 373, 469
Beers T. C., Geller M. J., 1983, ApJ, 274, 491
Beers T. C., Flynn K., Gebhardt K., 1990, AJ, 100, 32
Bell E. F., McIntosh D. H., Katz N., Weinberg M. D., 2003, ApJS,

149, 289
Berlind A. A. et al., 2006, ApJS, 167, 1
Bernstein J. P., Bhavsar S. P., 2001, MNRAS, 322, 625
Bildfell C., Hoekstra H., Babul A., Mahdavi A., 2008, MNRAS,

389, 1637
Binney J. J., Tremaine S. D., 1987, Galactic Dynamics (Prince-

ton: Princeton Univ. Press)
Bird C. M., 1994, AJ, 107, 1637
Blanton, M. R. et al., 2003, ApJ, 592, 819
Blanton M. R. et al., 2005, AJ, 129, 2562

Blanton M. R., Roweis S., 2007, AJ, 133, 734
Boylan-Kolchin M., Ma C.-P., Quataert E., 2008, MNRAS, 383,

93
Cacciato M., van den Bosch F. C., More S., Li R., Mo H. J., Yang

X., 2009, MNRAS, 394, 929 (C09)

Carlberg R. G., Yee H. K. C., Ellingson E., 1997, ApJ, 478, 462

Cohn J. D., Kochanek C. S., McLeod B. A., Keeton C. R., 2001,
ApJ, 554, 1216

Colless M., et al., 2001, MNRAS, 328, 1039

Collister A. A., Lahav O., 2005, MNRAS, 361, 415
Conroy C., Wechsler R. H., Kravtsov A. V., 2006, ApJ, 647, 201

Conroy C., Wechsler R. H., Kravtsov A. V., 2007, ApJ, 668, 826
Conroy C., Ho S., White M., 2007, MNRAS, 379, 1491

Cooray A., 2005, MNRAS, 363, 337

Cooray A., 2006, MNRAS, 365, 842
Corless V. L., King L. J., 2009, MNRAS, 396, 315

Coziol R., Andernach H., Caretta C. A., Alamo-Martinez K. A.,
Tago E., 2009, AJ, 137, 4795

Croton D.J., et al., 2006, MNRAS, 365, 11

de Vaucouleurs G., de Vaucouleurs A., Corwin H. G., Buta R.
J., Paturel G., Fouque P., 1991, Third Reference Catalogue
of Bright Galaxies (Heidelberg: Springer)

Font A. S., et al., 2008, MNRAS, 389, 1619

Giocoli C., Tormen G., Sheth R. K., van den Bosch F. C., 2010,
MNRAS, 404, 502

Guo Y., et al. 2009, MNRAS, 398, 1129

Guo Q., White S. D. M., Li C., Boylan-Kolchin M., 2010, MN-
RAS, 404, 1111

Hansen S. M., McKay T. A., Wechsler R. H., Annis J., Sheldon
E. S., Kimball A., 2005, ApJ, 633, 122

Hansen S. M., Sheldon E. S., Wechsler R. H., Koester B. P., 2009,
ApJ, 699, 1333

Hernquist L., 1990, ApJ, 356, 359
Hwang H. S., Lee M. G., 2008, ApJ, 676, 218

Johnston D. E., et al., 2007, preprint (arXiv:0709.1159)
Kang X., van den Bosch F.C., 2008, ApJ, 676, L101

Kimm T., et al., 2009, MNRAS, 394, 1131
Kochanek C.S., 1995, ApJ, 445, 559

Koester B. P., et al., 2007, ApJ, 660, 239
Koopmans L. V. E., Treu T., 2003, ApJ, 583, 606

Li C., Jing Y. P., Kauffmann G., Börner G., Kang X., Wang L.,
2007, MNRAS, 376, 984

Lin Y.-T., Mohr J. J., Stanford S. A., 2004, ApJ, 610, 745
Lin Y.-T., Mohr J. J., 2004, ApJ, 617, 879

Lo Faro B., Monaco P., Vanzella E., Fontanot F., Silva L., Cris-
tiani S., 2009, MNRAS, 399, 827L
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