

Lecture 13: Magnetic Activity and Rotation

Why are Magnetic Fields Important for Brown Dwarfs & Planets?

Magnetic fields generated in interior ⇒ direct probe of interior physics

Link to angular momentum loss mechanisms and interactions with external bodies

Detectability at non-thermal wavelengths (X-ray, radio)

Habitability (star & planet!)

Structure of Upper Atmosphere

Magnetic Field Measurements

Valenti & Johns-Krull (2001)

Magnetic fields can be measured directly for low mass stars via Zeeman line splitting

$$\Delta \lambda = rac{e}{4\pi m_e c^2} \lambda^2 \underline{g_{eff}} \mid B \mid$$
Lande g factor

Measurements for mid-type M dwarfs yield $\mathbf{B} \approx 2\text{-}4$ kG for $f \approx 50\text{-}80\%$ at photosphere (B = 1.5 kG and f = 1% for Sun)

Emission Diagnostics

- Ca II H&K (3930/3970 Å) standard for solar-type stars (e.g., Mt. Wilson Project), difficult to measure in very cool stars/brown dwarfs
- Hα (6563 Å) common measure for MLT dwarfs
- UV & X-ray sensitive to hot transition region/coronal emission
- Radio sensitive to synchrotron/maser emission from electrons in B fields
- Photometric bursts generally seen during flares

Chromospheric Emission: $H\alpha$

Induced by collisions between B-field bound electrons/ions and neutral H atoms (Alfven waves along field lines or acoustic heating may provide power source)

Most common activity metric for late-type dwarfs

Frequency of Ha Emission

The fraction of emission line objects rises to $\approx 80\text{-}100\%$ for spectral types M7-M8, then declines rapidly in the L dwarf regime.

Some dependence on height above Galactic disk ⇒ age effect?

West et al. (2004); see also Gizis et al. (2000)

Strength of $H\alpha$ Emission

Strength of H α emission peaks at M5-M7 ($L_{H\alpha} \approx 10^{-4} - 10^{-3} L_{bol}$), drops off rapidly past this (mostly upper limits)

A few interesting exceptions...

Burgasser et al. (2002)

Coronal Emission: X-ray

Fleming et al. (2003); see also Rutledge et al. (2000)

Active M stars emit up to $\sim 0.1\%$ of L_{bol} in X-rays, more energetic (relatively) than the Sun

Drop off in quiescent Xray emission beyond M5-M7 coincident with quiescent Ha

Transition Region Emission: UV

PHIT

Radio Emission

Quiescent radio emission arises from electron gyrosynchrotron emission

Quiescent and flaring emission detected in late-M and L-type dwarfs - not expected!

Berger et al. (2001)

Radio Emission Trends

Unlike H\alpha and X-ray emission, relative radio emission appears to increase with later spectral types

Requires steady supply of plasma to corona $(\tau_{decay} \approx minutes)$

Burgasser & Putman (2006); see also Osten et al. (2005); Berger (2006)

Violations of Guedel-Benz Relation

Correlation between X-ray and radio emission over many orders of magnitude of emission, stellar types/environments, etc

Very low mass stars & brown dwarfs violate this relation considerably.

Berger et al. (2006)

Quiescent vs Flaring Emission

Flaring: strong, impulsive emission that decays rapidly (minutes to hours), both line and continuum flux may be detected (L $\approx 10^{-3}$ - 10^{2} L_{bol})

Quiescent: steady emission that persists over long periods, typically line flux only in optical ($L \approx 10^{-6} - 10^{-3} L_{bol}$)

X-ray flares

M9 LP 944-20 (500 Myr brown dwarf at 5pc with Li I absorption) exhibited a 1-2 hr burst with $L_x/L_{bol} \approx 10^{-4}$

Note: no quiescent emission!

Radio Flares

M8 DENIS 1048-3956

caught in two flaring events at different frequencies spaced by \approx 10 min (\approx 1 min bursts)

100% polarized, $T_b \approx 10^{13} \text{ K} \Rightarrow \text{coherent}$ (maser) emission

Burgasser & Putman (2005)

Pulsar-like emission?

ROTATIONAL MODULATION OF THE RADIO EMISSION FROM THE M9 DWARF TVLM 513-46546: BROADBAND COHERENT EMISSION AT THE SUBSTELLAR BOUNDARY?

> G. Hallinan,¹ A. Antonova,² J. G. Doyle,² S. Bourke,¹ W. F. Brisken,³ and A. Golden¹ Received 2006 April 20; accepted 2006 August 27

600 Stokes V 200 200 200 200 400 0.5 Phase 1.5 2

Hallinan et al. (2007)

Periodic emission, indicative of rotation of beamed emission source

Brown dwarf as pulsar?

What do observations tell us about magnetic fields around brown dwarfs?

- (1) Magnetic fields exist
- (2) Magnetic fields are (possibly) as strong around brown dwarfs as around low mass stars
- (3) Chromospheres/coronae may not be as prominent around the coolest dwarfs

Activity and Cool Atmospheres

Mohanty et al. (2002)

Activity and Cool Atmospheres

At lower temperatures, photospheres have low ionization fractions and high resistivities

- ⇒ B field decoupled from photosphere, difficult to generate magnetic stress
- ⇒ Propagation of magnetic stresses from interior damped by electrical resistance
- ⇒ Decline in "activity"

Mohanty et al. (2002)

Rotation

Rotation

Rotation in brown dwarfs & planets is directly relevant to:

- origin
- angular momentum evolution, including tidal dissipation
 - early interactions with disks
 - magnetic properties

Rotation: vsin(i)

Basri et al. (2000)

Rotation of star results in **Doppler shifts** across stellar surface - broadening of <u>all</u> spectroscopic features

Pros:

- Single observation measurement
- Does not require surface variations

Cons:

- Significant investment in telescope time (5 km/s \Rightarrow R=60,000)
- sin(i) ambiguity

Clarke, Tinney, & Covey (2002)

$$P = 5 \sin i \left(\frac{R}{0.1 R_{\odot}}\right) \left(\frac{v \sin i}{\text{km/s}}\right)^{-1} \text{ days}$$

Rotation of stable surface features (spots, clouds) in/out of line of sight produces periodic light curve

Clarke, Tinney, & Covey (2002)

$$P = 5 \sin i \left(\frac{R}{0.1 R_{\odot}}\right) \left(\frac{v \sin i}{\text{km/s}}\right)^{-1} \text{ days}$$

Rotation of stable surface features (spots, clouds) in/out of line of sight produces periodic light curve

Pros:

$$P = 5 \sin i \left(\frac{R}{0.1 R_{\odot}}\right) \left(\frac{v \sin i}{\text{km/s}}\right)^{-1} \text{ days}$$

Rotation of stable surface features (spots, clouds) in/out of line of sight produces periodic light curve

Pros:

• Can be measured with small telescopes

Clarke, Tinney, & Covey (2002)

$$P = 5 \sin i \left(\frac{R}{0.1 \ R_{\odot}} \right) \left(\frac{v \sin i}{\text{km/s}} \right)^{-1} \text{ days}$$

Clarke, Tinney, & Covey (2002)

Rotation of stable surface features (spots, clouds) in/out of line of sight produces periodic light curve

Pros:

- Can be measured with small telescopes
- Differential photometry is easy

$$P = 5 \sin i \left(\frac{R}{0.1 R_{\odot}}\right) \left(\frac{v \sin i}{\text{km/s}}\right)^{-1} \text{ days}$$

Clarke, Tinney, & Covey (2002)

Rotation of stable surface features (spots, clouds) in/out of line of sight produces periodic light curve

Pros:

- Can be measured with small telescopes
- Differential photometry is easy

Cons:

$$P = 5 \sin i \left(\frac{R}{0.1 \ R_{\odot}} \right) \left(\frac{v \sin i}{\text{km/s}} \right)^{-1} \text{ days}$$

Clarke, Tinney, & Covey (2002)

Rotation of stable surface features (spots, clouds) in/out of line of sight produces periodic light curve

Pros:

- Can be measured with small telescopes
- Differential photometry is easy

Cons:

• Long monitoring periods required

$$P = 5 \sin i \left(\frac{R}{0.1 R_{\odot}}\right) \left(\frac{v \sin i}{\text{km/s}}\right)^{-1} \text{ days}$$

Clarke, Tinney, & Covey (2002)

Rotation of stable surface features (spots, clouds) in/out of line of sight produces periodic light curve

Pros:

- Can be measured with small telescopes
- Differential photometry is easy

Cons:

- Long monitoring periods required
- Surface features must exist and be relatively stable (few rotation periods)

$$P = 5 \sin i \left(\frac{R}{0.1 R_{\odot}}\right) \left(\frac{v \sin i}{\text{km/s}}\right)^{-1} \text{ days}$$

Rotation Properties of LMSs/BDs

- Ultracool dwarfs are very rapid rotators:
 - vsin(i) up to 60 km/s
 - P as low as 2 hr
 - j = J/M ≈ 10^{14} ... 10^{15} cgs (j_⊙ ≈ 5×10^{15} cgs)
 - Fastest rotators may be significantly flattened

Rotation and Activity

Noyes et al. (1984)

In stars, there is a correlation between rotation (specifically the Rossby number, the ratio of rotation and convection timescales) and chromospheric emission

Largely believed to be indicate more effective dynamo generation with faster rotation

Rotation and Activity

L dwarfs are all rapid rotators without significant Hα emission

No clear correlation between rotation and radio emission either

Basri (2000)

Rotation and Age

Stars appear to spin down over time - angular momentum loss largely from magnetized winds (e.g., coronal mass ejections)

Rotation of a Halo Brown Dwarf

Reiners & Basri (2006)

Rotation of a Halo Brown Dwarf

10 Gyr Halo L subdwarf **2MASS 0532+8246** has vsin(i)
= 65±15 km/s

Is there no (significant) braking mechanism at play in (some) very low mass objects? Do L dwarfs never slow down?

Reiners & Basri (2006)

How are these fields generated?

How are these fields generated?

"Standard" model of field generation in stars is $\alpha\Omega$ dynamo (Parker 1955) – requires convective/radiative boundary to anchor field (also Ω only shell dynamo - Babcock 1961)

<u>Problem</u>: Stars/BDs later than type M3 are fully convective ⇒ alternate dynamo mechanism required

Activity relations, B field strengths over M2-M6 show no "kinks"

An Alternative α^2 Dynamo

Chabrier & Kuker (2005); also Radler et al. (1990)

An Alternative α^2 Dynamo

Chabrier & Kuker (2005); also Radler et al. (1990)

Dynamo action generated by Coriolis effects on convective flows.

Produces large-scale, *non*-axisymmetric field (i.e., not a dipole)

Consequences:

- Rotation dependent
- Weakened coupling to magnetic winds
- Works for fully convective stars

Α Ε E 0 Ε 7

Do these models fit the observations?

V374 Peg: Donati et al. (2006); Jardine & Donati

Do these models fit the observations?

High resolution spectropolarimetry of fully convective star V374 Peg (M4) indicates a **global, axisymmetric** field.

Jupiter has a global, axisymmetric field.

V374 Peg: Donati et al. (2006); Jardine & Donati

Magnetic Emission from Planets

Interaction with Solar wind

largely applies to planets with intrinsically strong magnetic fields (E,J,S,U,N)

Jupiter/Io-like interaction

magnetic disturbance induced by conductor (moon) passing through planet's magnetic field

Planetary interactions with Stellar winds

Magnetic shock around Venus Russell & Vaisberg (1983)

Planets with magnetic fields

largely deflect solar wind, charged particles are capture to form aurorae

Planets w/o magnetic fields

highly conductive, will acquire a weak induced field, may have atmosphere stripped (e.g. Mercury, Mars)

Magnetosphere Structure

Jupiter:

Largest structure in solar system (50-100 R_{jupiter})

Surface field: ~5-15 G

Relative inclination: 9.6°

Co-discoverer - Bernie

Burke (1959)!

B fields of Saturn, Uranus and Neptune are ~ 10x weaker

Exoplanet B field measurements?

HD 209458b:

Hot plasma is ejected from planet (Vidal-Madjar et al. 2003, 2004)

G0 V primary: possibly as magnetically active as the Sun

Higher incident solar wind power is 10⁴ times strong than Jupiter

Could this be detected?

Crab Nebula 1000 Virgo A Orion Nebula Çygnus A 3C295 100 3C273 FLUX DENSITY (Jy) 10.0 Jupiter 1.0 2002 VLA Measurement 0.1 -Tau Bootes 74 MHz, 0.12 Jy sensitivity 0.01 Rho CrB HD114762 70 Vir 0.001 10 100 1000 10000 FREQUENCY (MHz)

Farrell et al. (2003)

No luck yet

Magnetic fields of tidally locked planets may be weak (~1 G; Sánchez-Lavega 2004)

May be possible with SKA

Best candidates: τ Bootes, Gliese 86, υ Andromeda, HD 1237 and HD 179949 (Stevens 2005)

Other magnetic interactions may be present (e.g. Puesse et al. 2006)

Habitability

Artist's impression of the Gliese 581 system (ESO)
Primary is an M3 dwarf at 6.3 pc

Fact: M dwarfs are the most common stars in the Galaxy

Fact: The habitable zones of M dwarfs are < 0.1 AU

Fact: M dwarfs are the most frequently and persistently magnetically active stars

How does magnetic activity impact the genesis and evolution of life in the Galaxy?