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Motivation 
GB Scaling Breaking, mesoscale transport process,
Non-locality  Free energy delocalized from Source/Excitation

 Avalanches (fluctuating gradient coupling)
Mechanisms

✿Turbulence Spreading (NL wave interactions)
Observed both in experiments① and simulations (shown later)

  Diffusive front  (outwards)  
Fast Propagation  

  Ballistic front   (inwards)
Recently, several theoretical models②③④  are developed  for this 
theoretical challenge   
But, in general   models noise effects are ignored !? 

Important (predicted by ② ), enhance range of spreading
Noise

   Necessary(self-consistent), NL sink only (imperfect) 
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Simplest Model-Resistivity gradient driven turbulence 

Thermal  
Equation 
Electric Field 
Drift Velocity

Ohm's Law with 
Resistivity Gradient

Linear theory, 

Multiplies (1) by  and making statistical average, yields

Triad Interaction Term 
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Simplest Model-Prediction  
Intensity  
Continuity  
Equation         Coherent

Intensity Flux Triad Interaction     
Goal of    In-Coherent    
Turbulence NL effects  

 Spreading     
     

           Constraint in form     Inhomogeneous Noise 
 of Intensity Flux with Radial Shifts

But, if theoretical model③ like 
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Results-Spectral Structure   

      NL Diffusion   NL Damp Inhomogeneous noise
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Results-Spectrial Equation  
Rewriting Spectral Eqn. (in Two Radial Scales ) 

NL Diffusion 

NL Damping     Noise
during cancel

because 

Energy conserved in NL Processes

   0  0 Linear Balance 
Steady ( Boundaries) 
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Results-Contrast with Prediction & Fisher Eqn. 

  Constraint in form of Intensity Flux

Spectral
Equation

      NL Diffusion    NL   Damp

    ~
Compare

Fisher
Equation

Linear But ≠    Inhomogeneous Noise 
  with Radial Shifts
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Conclusion 
Nonlinear noise  is usually neglected   in turbulence spreading 

models  (i.e. );

Noise from nonlinear beats can deliver power to leading edge 

of spreading front        impact on spreading (ballistic !?);
Interactions of noise with leading edge of front are restricted by 

mode resonance structure and finite spectral width; 

Noise is Self-Consistent with NL Damping effects;

All NL effects are constraint in forms of  and noise is term 

with little radial shifts;  Purely  local NL damp effects are 

unphysical ;  

“Front” Noisy front.
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Solve  equation and determine nonlinear noise 

effects on front propagation speed;

Smooth leading edge         noisy  leading edge

      effects on front speed;

Consider more realistic models, more physics ( esp. 

noise feedback on         avalanche trigger ?  )

Future work
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9 Results-Renormalization    
NL Diffusion Conduction     Growth  

      Radial Profile Steady State

Compare and adding Free energy is first 
Diffused before being
Conducted near  
Resonance Surface

 1
⑤ L.Garcia, P. H. Diamond, B. A. Carreras, and J. D. Callen, PFL,28,2147,(1985); 
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7 Results-Spectral Structure   
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