Pulse Propagation and Fast Transient Transport Model with Self Consistent Nonlinear Noise

Z. Wang, P. H. Diamond, Ö. D. Gürcan UCSD, La Jolla, CA X. Garbet CEA, Cadarache, France

50th Annual Meeting of Division of Plasma Physics

Nov. 17 - 21 2008, Dalas, Texas

Outline

- Motivation
- Simplest Model
- Results
- Conclusion
- Future Work

Motivation

- GB Scaling Breaking, *mesoscale* transport process, $L_{corr} < l < L_{sus}$
- *Non-locality* Free energy delocalized from Source/Excitation

- Mechanisms {Avalanches (fluctuating gradient coupling) *Turbulence Spreading (*NL wave interactions*) Observed both in experiments^① and simulations (shown later) Fast Propagation { Diffusive front (outwards) Ballistic front (inwards)

- Recently, several theoretical models²³⁴ are *developed* for this theoretical challenge
 - But, in general $K \varepsilon$ models *noise* effects are ignored !?
 - Noise

[Important (predicted by ②), enhance range of spreading Necessary(*self-consistent*), NL sink only (imperfect)

CTEM Nonlinear Bursting and Spreading By Z.Lin

Ion transport

Electron transport

Simplest Model-Resistivity gradient driven turbulence

Form ?

Simplest Model-Prediction

Results-Spectral Structure

Results-Spectrial Equation

Results-Contrast with Prediction & Fisher Eqn.

Conclusion

- Nonlinear *noise* is usually *neglected* in turbulence spreading models (i.e. $K \epsilon$);
- Noise from nonlinear beats can deliver power to leading edge of spreading front *impact* on spreading (*ballistic* !?);
- Interactions of noise with leading edge of front are restricted by mode resonance structure and finite spectral width;
- Noise is Self-Consistent with NL Damping effects;
- All NL effects are constraint in forms of $\nabla \cdot \vec{J}$ and noise is term with little radial shifts; *Purely* local NL damp effects are unphysical $= \gamma_{nl} \epsilon^2$;

"Front" — Noisy front.

Acknowledgement:

Prof. Diamond's Great and Unwearied Help;Prof. Lin's Nice pictures of Bursting spreading;Also, Ozgur and Chris's help on my researches.

- P. Mantica, D. Van Eester, X. Garbet, *et al.*, Phys. Rev. Lett. **96**, 095002 (2006).
- ② T. S. Hahm, P. H. Diamond, Z. Lin, *et al.*, Plasma Phys. Control Fusion **46**, A323 (2004).
- ③ Ö. D. Gürcan, P. H. Diamond and T. S. Hahm, Phys.

Plasmas 14, 032303 (2005).

④ X. Garbet, Y. Sarazin, F. Imbeaux, *et al.*, Phys. Plasma
 14, 122305 (2007).

⁹ **Results**-Renormalization

5 L.Garcia, P. H. Diamond, B. A. Carreras, and J. D. Callen, PFL, 28, 2147, (1985);

⁷ **Results-**Spectral Structure

$$\frac{\partial \langle \tilde{T}_{\vec{k}}^2 \rangle}{\partial t} + \nabla \cdot \vec{J} = (\gamma_{\vec{k}}^l + \chi \nabla^2) \langle \tilde{T}_{\vec{k}}^2 \rangle + \nabla \cdot \vec{J}_{noise}$$

Where

 $\vec{\tilde{D}}(\tilde{T}^2_{\vec{k}''}) = \frac{1}{2} \sum_{\vec{k}'} \Theta_{\vec{k},\vec{k}',\vec{k}''} \vec{V}^{eff}_{\vec{k}'} \vec{V}^{eff}_{-\vec{k}''} \langle \tilde{T}^2_{\vec{k}''} \rangle I \langle T \rangle^2$

$$\vec{V}(\tilde{T}_{\vec{k}'}^{2}) = -\frac{1}{2} \sum_{\vec{k}'} \Theta_{\vec{k},\vec{k}',\vec{k}''} \vec{V}_{\vec{k}'}^{eff} \vec{V}_{\vec{k}'}^{eff} \cdot \nabla^{*} \langle \tilde{T}_{\vec{k}'}^{2} \rangle / \langle T \rangle^{2} \qquad \text{damp}$$

$$\vec{\tilde{D}}(\tilde{T}_{\vec{k}''}^{2}) = \frac{1}{2} \sum_{\vec{k}'} \Theta_{\vec{k},\vec{k}',\vec{k}''} \vec{V}_{\vec{k}'}^{eff} \vec{V}_{-\vec{k}''}^{eff} \langle \tilde{T}_{\vec{k}''}^{2} \rangle / \langle T \rangle^{2} \qquad \text{Cancel ?!}$$

$$\vec{J}_{noise} = \frac{1}{2} \sum_{\vec{k}'} \Theta_{\vec{k}}_{,\vec{k}',\vec{k}''} \vec{V}_{\vec{k}'}^{eff} \vec{V}_{\vec{k}'}^{eff} \cdot \nabla^* \langle \tilde{T}_{\vec{k}''}^2 \rangle I \langle T \rangle^2 \langle \tilde{T}_{\vec{k}'}^2 \rangle \text{ noise}$$

$$\vec{V}_{\vec{k}}^{eff} = \left|\frac{C_t E_o}{k_{\parallel} B_T}\right| \vec{k} \times \hat{z}$$

$$\boldsymbol{\gamma}_{k}^{l} = \vec{V}_{\vec{k}}^{eff} \cdot \left| \nabla \langle T \rangle / \langle T \rangle \right|$$

