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Abstract. The inviscid invariance of potential vorticity is used to derive momentum

balance relations for zonal flows in drift wave turbulence. The relations are

constructed by exploiting potential enstrophy balance and the Taylor identity, and

link flow momentum to turbulence pseudomomentum, along with the driving flux, the

dissipation and turbulence spreading. Applications to atmospheric jets and to zonal

flows in plasmas are discussed.
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1. Introduction

Zonal flow physics has been the focus of a very large research effect in the magnetic

confinement physics community[1, 2]. However, while its certainly the case that

considerable progress has been achieved, many aspects of zonal flow dynamics remain

poorly understood. In this paper, we present a brief summary of ongoing research on

momentum theorems for zonal flows in quasi-geostrophic and drift wave turbulence. In

contrast to most, if not all, of the previous theoretical studies of zonal flow dynamics in

the M.F.E. community, here we concentrate on a.) zonal flow momentum, rather than

energy, and its relation to fluxes, entrainment, dissipation, etc., b.) the spatial structure

of zonal flows, rather than the dynamics of k-space nonlinear couplings which excite

them. We forego the usual picture, couched in terms of microscopics and modulational

instability, spectral transfer, etc., in favor of one linked to macroscopics and spatial

transport, c.) the impact of entrainment effects, aka ’turbulence spreading’, on flow

dynamics. We give special attention to the effect of the potential enstrophy flux on

zonal flow evolution, and argue that turbulence spreading can actually drive shear flows.

Our discussion, which is partly tutorial and partly original, is centered on two case

studies, which are:



Momentum Theorems and Structure of Atmospheric Jets and ZFs in Plasmas 2

i.) β-plane models of the generation of mid-latitude westward jets in Rossby wave

turbulence[3],

ii.) the structure of zonal flows in Hasegawa-Wakatani[4] models of drift wave

turbulence with fixed driving flux.

The principal results of this analysis are zonal momentum balance theorems, akin to

those of Charney and Drazin[5], which relate the evolution of zonal flow momentum to

that of the turbulence pseudomomentum[6] and physical processes controlling relaxation

and dissipation in drift wave turbulence. The pseudomomentum (sometimes referred to

as the wave activity density[7]) may be thought of as a wave or turbulence momentum

density, is proportional to the familiar wave action density in the weakly nonlinear limit,

and is unambiguously defined via the evolution of potential enstrophy density (locally

conserved for inviscid dynamics) and the Taylor identity between vorticity flux and

Reynolds stress. Unlike wave kinetics, however, this formulation is not restricted to

regimes of weak turbulence. The utility of potential enstrophy balance and the Taylor

identity are unifying themes of this paper.

2. Jet Formation in β-plane Turbulence

A well known and instructive case-study in the formation of zonal flows is that of the

formation of mid-latitude westward jets. This zonal jet is part of a ubiquitous dipole

pair consisting of an eastward subtropical jet and a westward jet at mid-latitudes, which

necessarily flows against the prevailing atmospheric wind. Turbulence is excited on

the subtropics due to baroclinic instability, etc. Moreover, the excitation inputs no

net momentum, so the zonal flow direction must be set by the system properties (i.e.

coriolis force, wave propagation, direction, etc.) alone. This suggests that the problem

of dipole formation reduces to one of understanding how adding energy at low latitudes

accelerates the eastward flow in the subtropics while simultaneously driving a westward

jet at mid-latitudes.

The zonally averaged flow 〈vx〉 evolves according to,

∂〈vx〉

∂t
= −

∂

∂y
〈ṽyṽx〉 − ν〈vx〉, (1a)

where we have included a scale independent friction ν to allow stationarity of the mean

zonal flow. For GFD applications, this friction may be thought of as corresponding to

topographic friction, while for plasma applications, ν corresponds to collisional drag.

The Taylor identity for geostrophic flow,

−
∂

∂y
〈ṽy ṽx〉 = 〈ṽyω̃〉, (1b)

in turn relates the Reynolds force to the flux of vorticity in latitude. The plasma

analogue of this useful relation is an identity between the flux of polarization

charge and the Reynolds force exerted by fluctuating E × B flows. As the flux of

vorticity also appears in the production term of the enstrophy evolution equation, we
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straightforwardly derive the latter from the well-known quasi-geostrophic equation (a

closely related antecedent of the familiar Hasegawa-Mima[8] equation),

∂

∂t
ω̃ + ṽ · ∇ω̃ = −

(

β +
∂

∂y
〈ω〉

)

ṽy + µ∇2ω̃ + f̃ (2a)

∂

∂t
〈ω̃2〉 +

∂

∂y
〈ṽyω̃

2〉 + β∗〈ṽyω̃〉 = 〈f̃ ω̃〉 − µ〈(∇ω̃)2〉. (2b)

Here β∗ ≡ β + ∂〈ω〉/∂y, 〈ω̃2〉 is the zonally averaged enstrophy density, and a factor of

2 has been absorbed into β∗, f̃ and µ. Equation (2b) states that enstrophy density is

produced by stirring and by interaction with β∗, damped by viscosity, and transported

by advection. Combining Eqns. (1a, 1b, 2b) yields:

∂

∂t

[

〈ω̃2〉

β∗
+ 〈vx〉

]

=
〈f̃ ω̃〉

β∗
−

µ

β∗
〈(∇ω̃)2〉 −

1

β∗

∂

∂y
〈ṽyω̃

2〉 − ν〈vx〉, (3)

which is a momentum conservation theorem for the zonal flow 〈vx〉. The quantity 〈ω̃2〉/β∗

may be recognized as the negative of the turbulence pseudomomentum, which for small

amplitudes is equivalent to the zonal momentum density of Rossby waves kxN(x,k, t),

where N is the wave action density. Thus, Eqn. (3) states that (to within a constant), the

zonal flow momentum is locked to the wave momentum density, apart from the effects

of forcing, dissipation and the spatial flux of wave momentum density. Equivalently,

Eqn. (3) also implies that in the absence of forcing, dissipation and wave momentum

density flux, stationary turbulence cannot accelerate a mean zonal flow. Note that

Eqn. (3) is in principle exact, and makes no approximation of small amplitude, weakly

nonlinear waves, quasilinear closure, etc. Thus, while the wave activity density 〈ω̃2〉/β∗

is easily seen to be related to the wave momentum density in cases of ’weak’ or ’wave’

turbulence, it is in fact much more general. Reduction to weak or wave turbulence

requires that the enstrophy density flux term (1/β∗)(∂/∂y)〈ṽyω̃
2〉 be negligible, or

at least smaller than the quadratic terms in Eqn. (3). In practice, this occurs when

ṽy/LE ≪ 1/τ , i.e. when turbulent advection over the enstrophy density envelope scale

LE is slow in comparison to rates characteristic of enstrophy density evolution. Thus,

reduction to the weak turbulence or quasi-linear limit occurs when LE is sufficiently

large, regardless of the turbulence intensity.

The momentum theorem of Eqn. (3) has interesting implications for the problem

of mid-latitude westward jet formation. This follows from consideration of Eqn. (3) for

stationary turbulence and flows, which may easily be solved for the zonal velocity 〈ṽx〉,

i.e.

〈vx〉 =
1

νβ∗

[

〈f̃ ω̃〉 − µ〈(∇ω̃)2〉 −
∂

∂y
〈ṽyω̃

2〉

]

. (4)

The limiting case where β∗ → 0, which corresponds to constant total mean potential

vorticity, will be discussed in a future publication. Ignoring, for the moment, the

enstrophy flux, Eqn. (4) relates the zonal velocity to forcing and viscous dissipation

of enstrophy. In particular, for forcing f̃ sharply localized in the subtropics, 〈vx〉 ∼=

〈f̃ ω̃〉/νβ∗ ≈ 〈f̃ 2〉τc/νβ∗. Here τc is the correlation time for the response of ω̃ to f̃ . Note
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that the direction of 〈vx〉 (i.e. eastward) is set by β∗, despite the absence of any net

momentum input or net orientation in the external forcing. Away from the subtropics,

where forcing is negligible, 〈vx〉 ∼= −(µ/νβ∗)〈(∇ω̃)2〉, so the zonal flow is westward,

consistent with the formation of mid-latitude westward jets. Thus, we see that a dipole

pair of jets can results from the combined action of localized forcing and distributed

dissipation. Finally, note that within the β-plane approximation, conservation of total

zonal momentum is assured by conservation of total enstrophy, since
∫

dy〈vy〉 =
1

νβ∗

∫

dy
[

〈f̃ω̃〉 − µ〈(∇ω̃)2〉
]

−
1

νβ∗
〈ṽyω̃

2〉

∣

∣

∣

∣

y+

y
−

= 0, (5)

i.e. in a stationary state, enstrophy input from forcing must equal losses due to

enstrophy dissipation and enstrophy flux thru the boundary of the region of interest. Its

interesting to observe that as a consequence of the Taylor identity, zonal flow momentum

conservation is linked directly to enstrophy balance, and that zonal flow structure is

determined by the profiles of stirring and dissipation.

The physical meaning of Eqn. (3) merits discussion, so here we offer a novel

interpretation of this useful result. Given that 〈ω̃2〉/β∗ is the negative pseudomomentum,

Eqn. (3), which evolves the difference of flow and wave momentum, may be thought of

as a relation governing the relative slip, i.e. the difference between the mean momentum

of the fluid 〈vx〉 and the momentum of a co-existing, inter-penetrating fluid of quasi-

particles (i.e. −〈ω̃2〉/β∗) which are simply the waves, vortices etc. of the turbulence.

In the absence of direct excitation or dissipation of the quasi-particles or fluid, Eqn. (3)

states that these two fluids are locked together or frozen into one another, so that their

relative momentum cannot change. Thus, in the absence of dissipation etc., and for

stationary turbulence, the zonal flow cannot grow at the expense of the fluctuations

since this would violate the ’no-slip’ law. Indeed, zonal flow evolution requires some

relative pumping of the fluctuations or fluctuation damping (i.e. a ’beach’ effect) or a

net spatial in/out flow of fluctuation pseudomomentum (i.e. ∼ ∂y〈ṽyω̃
2〉), all of which

can potentially alter the balance between the momentum of the physical fluid and that

of the quasi-particle fluid, thus allowing one to slip relative to the other. In this sense,

the result of Eqn. (3) may be viewed as a consistency condition for coupling in the

presence of dissipation, since it specifies precisely what flow is required for the drag on

the physical fluid to balance the change in the momentum of the quasi-particle fluid.

Future work on this topic will address the important issue of Galilean invariance.

An even simpler explanation of the dipole jet formation may be obtained from

simple considerations of Rossby wave energy and momentum flux. Of course, the Rossby

wave is the linear eigenmode of the quasi-geostrophic equation with dispersion relation,

ω = −βkx/k
2 + kx〈vx〉, (6)

where we include the effect of a zonal flow in the x̂ direction. Rossby waves, excited

by energy input at the equator, must radiate energy poleward. Causality requires

the consequent outgoing wave boundary condition to force perturbations to vanish as
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y → ∞, so upon introducing an infinitesimal drag γ , δky > 0, i.e. the resulting

increment in ky must be positive. Since δky = iγ/(∂ωr/∂ky), this requires the product

kxky > 0. However, the wave-induced momentum flux is just

Πy,x =
∑

k

−kykx|φ̃k|
2 (7)

where φ is the stream function. Thus, Πy,x < 0, and so always transports momentum

towards the equator. This guarantees that as energy radiates away from equatorial

excitation, momentum will coverage there, thus accelerating an eastward equatorial jet.

Since the equatorial convergence of momentum necessarily implies a momentum deficit

at higher latitudes, a westward jet must necessarily form there. This accounts for the

formation of dipole pairs of jets. Interestingly, since the Rossby wave group velocity

vgy = 2βkxky/(k2
x + k2

y)
2 is positive definite (since kxky > 0), equatorial momentum

convergence is a simple consequence of the fact that Rossby waves are ’backward’, i.e.

that their latitudinal phase and group velocities are always opposite, so vphyvgy < 0,

thus reconciling a poleward energy flux with an equatorward momentum flux. Finally,

it is only meaningful to impose outgoing wave boundary conditions when the excitation

region is localized relative to the dissipation region.

3. Zonal Flow Momentum in Drift Wave Turbulence

We now consider zonal flow momentum in a simplest nontrivial model of drift wave

turbulence, namely the Hasegawa-Wakatani(HW) model, contained in the density and

vorticity equations:

dn

dt
= −D‖∇

2
‖(φ − n) + D0∇

2n, (8a)

d

dt
∇2φ = −D‖∇

2
‖(φ − n) + µ∇2∇2φ. (8b)

Here D‖ refers to parallel collisional diffusion — i.e. D‖ = v2
The/νei — while D0 and

µ are the perpendicular collisional diffusivity and viscosity, respectively, and the rest

of the notation is standard. Hereafter, we take Prandtl number Pr = µ/D0 = 1, for

simplicity. Pr 6= 1 will be discussed in a future publication. The HW model is the

’minimally relevant’ one since parallel dissipation shifts the phase between ṽr and ñ,

allowing resistive drift wave instability, the self-excitation of turbulence, and a finite

turbulent particle flux ΓT = 〈ṽrñ〉 6= 0. The evolution of the mean flow is identical to

that given in Eqn. (1a).

A key lesson of Section 2 is the utility of the potential enstrophy budget in

constraining the zonal flow evolution. Hence, it is interesting to note that the explicitly

3D HW system locally evolves the potential vorticity (PV),

u = ∇2φ − n. (9a)

This is conserved since it obeys the intrinsically 2D equation,

du

dt
= D0∇

2u. (9b)
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Of course, for Boltzmann electrons where n = φ, Eqn. (9b) reduces to the familiar

Hasegawa-Mima equation. Since PV is conserved along particle trajectories up to

diffusion, potential enstrophy 〈u2〉 is an inviscid invariant. Thus, a fluctuation potential

enstrophy density balance relation of the form,

∂

∂t
〈ũ2〉 +

∂

∂r
〈ṽrũ

2〉 = −〈ṽrũ〉
d〈u〉

dr
− D0〈(∇ũ)2〉 (10a)

is easily obtained. As before, the potential enstrophy budget balances production via

PV flux 〈ṽrũ〉 (acting with d〈u〉/dr) with diffusive damping and advection of potential

enstrophy density. Since the zonally averaged flow satisfies

∂

∂t
〈vθ〉 = 〈ṽr∇

2φ̃〉 − ν〈vθ〉 (10b)

via the Taylor identity, we can straightforwardly obtain a zonal momentum conservation

theorem of the form

∂

∂t

{

〈ũ2〉

d〈u〉/dr
+ 〈vθ〉

}

= 〈ṽrñ〉

−

(

d〈u〉

dr

)−1
{

D0〈(∇ũ)2〉 + ∂r〈ṽrũ
2〉

}

− ν〈vθ〉 (11)

This theorem is the principal result of this paper. Equation (11) relates the sum of

the drift wave activity density (the negative of the pseudomomentum) and the zonal

flow momentum to the driving flux, the potential enstrophy dissipation, the potential

enstrophy density flux, and the drag. Note that in the absence of turbulent transport,

dissipation and entrainment, Eqn. (11) states that stationary turbulence cannot excite

a zonal flow. Equation (11) establishes an intimate connection between particle flux and

poloidal flow, since it shows that a spike in 〈ṽrñ〉 will necessarily excite a response in

〈vθ〉[9]. Moreover, the zonal flow momentum can be constrained further by noting that

in nearly all applications to core transport, the total driving flux should be regarded as

fixed, so

Γ0 = 〈ṽrñ〉 − D0

∂〈n〉

∂r
(12)

is a constant, and Eqn. (11) can be re-written as

∂

∂t

{

〈ũ2〉

d〈u〉/dr
+ 〈vθ〉

}

= Γ0 + D0∂〈n〉/∂r

−

(

∂〈u〉

∂r

)−1
{

D0〈(∇ũ)2〉 + ∂r〈ṽrũ
2〉

}

− ν〈vθ〉.(13)

In general, the collisional particle transport, D0∂〈n〉/∂r term is negligible in comparison

to Γ0, with the exception of regimes where the turbulent flux is quenched, such as in the

case of transport barriers or the Dimits shift[10]. For stationary states corresponding to

L-mode regimes, Eqn. (13) yields an explicit expression for the zonal flow in the form

〈vθ〉 =
1

ν

{

Γ0 −
1

(∂〈u〉/∂r)

[

D0〈(∇ũ)2〉 + ∂r〈ṽrũ
2〉

]

}

(14)
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Equation (14) is notable as it relates the saturated zonal flow to the driving fixed flux

Γ0, the viscous potential enstrophy density dissipation and the radial flux of potential

enstrophy density. It departs from previous formulations in that the dependence on

linear growth, etc. — ubiquitous in modulational stability calculations — is replaced by

proportionality to the fixed constant driving flux Γ0, which is a macroscopic quantity.

Reynolds stress no longer appears explicitly, but is replaced by dependence on potential

enstrophy dissipation and transport. Equation (14) again echoes the theme that zonal

flow structure is regulated by dissipation profiles. In particular, it states that the all

important zonal flow shear 〈vθ〉
′ is set by

〈vθ〉
′ = −

Γ0

ν2
ν ′ −

{

1

ν〈u〉′
(

D0〈(∇ũ)2〉 + ∂r〈ṽrũ
2〉

)

}′

, (15)

i.e. by the radial profile of the drag and the potential enstrophy dissipation. This, in

turn, suggests that drag and dissipation profiles, as well as turbulence spreading, are

essential elements of the shear suppression feedback loop, and that quasi-local flux-tube

models which ignore them make a serious omission. We also note that as 〈vθ〉
′ increases

〈ṽrñ〉 must decrease to the point that the collisional flux is no longer negligible. Hence,

this contribution must be retained to accurately describe or simulate zonal flows at the

threshold of transport barrier formation or in the Dimits shift.

An intriguing and novel feature of Eqns (13, 14) is the apparent impact of potential

enstrophy density flux on zonal flow dynamics. Equation (13) implies that jumps in the

flux 〈ṽrũ
2〉 can drive a zonal flow in the transition region, i.e. that a change in 〈ṽrũ

2〉

over a layer of width ∆r can drive a flow on that scale according to the approximate

relation:

(∂t〈vθ〉)∆r

(

∂〈u〉

∂r

)

≈ 〈ṽrũ
2〉

∣

∣

∣

∣

x
−

x+

. (16)

This suggests that poloidal rotation associated with the onset of Internal Transport

Barriers (ITB’s) may arise from the drop in the turbulent potential enstrophy flux

associated with barrier formation. It also states that a feedback loop involving

turbulence spreading (of 〈ũ2〉) can play a role in barrier formation via the scenario where:

Note that this scenario should not be regarded as counter-intuitive, since Eqn. (13) states

that zonal momentum evolution is strongly tied to pseudomomentum evolution. Since

the pseudomomentum is in turn directly proportional to 〈ũ2〉 (the potential enstrophy

density), transport of 〈ũ2〉 must indeed influence the evolution of zonal momentum.

More generally, Eqn. (13) also suggests that transport of potential enstrophy can act as

a mechanism of nonlinear saturation for zonal flows in the collisionless limit (i.e. when

drag ν → 0). In that case, for stationary turbulence (and ignoring all collisional flow

dissipation)

∂〈vθ〉

∂t
= 〈ṽrñ〉 −

1

〈u〉′
∂

∂r
〈ṽrũ

2〉 (17)

so saturation is in principle possible if 〈ṽrũ
2〉 ∼

∫

dr〈ṽrñ〉〈u〉
′, i.e. if the potential

enstrophy flux balances the net potential enstrophy production by the particle flux.
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Note that while we have known for sometime that turbulence spreading[11] may act as

a saturation mechanism, this argument pinpoints the transport of potential enstrophy

as that which critical to zonal flow dynamics. The theoretical technology to explicitly

compute 〈ṽrũ
2〉 already exists in the literature[12]. Finally Eqns. (13,16) suggest that a

flux of potential enstrophy thru the plasma boundary may induce a net poloidal rotation.

Another interesting feature of Eqn. (11) is the unambiguous emergence of

−〈ũ2〉/〈u〉′ as the turbulence pseudomomentum or ’wave momentum density’, i.e. the

intensity - dependent quantity which is locked together with the zonal flow momentum.

While −〈ũ2〉/〈u〉′ surely reduces to the familiar expression kθN (i.e. the poloidal

momentum density of mode k) in the limit of weak turbulence and Boltzmann electrons,

it is far more general since it follows from enstrophy balance and the Taylor identity,

alone, and is not based upon wave kinetics, which is sensitive to the structure of the

linear dispersion relation. In particular, the structure of the conservation equation for

the quantity (〈ũ2〉/〈u〉′ + 〈vθ〉) (i.e. zonal flow momentum − pseudomomentum), does

not depend upon whether the turbulence is weak or strong, whether the electrons are

Boltzmann (i.e. D‖/(Rq)2ω∗ ≫ 1) or hydrodynamic (i.e. D‖/(Rq)2ω∗ ≪ 1), or upon

any other linear feature of the drift wave. In this sense, the identification of a locally

conserved PV yields a clarification of the technical subtleties surrounding the precise

and optimal definition of the adiabatic invariant for use in calculating drift wave - zonal

flow interaction.

4. Discussion and Outlook

One rather obvious question is whether or not the message of this paper is restricted

only to highly simplified models. In particular, its natural to inquire concerning the

effects of curvature and the robustness of the theorem in gyrokinetics. Regarding the

former, using the approach discussed in this paper, it is straightforward to derive a zonal

momentum theorem for electrostatic resistive interchange turbulence[12] in which the

pressure evolution equation replaces Eq. (8a), and the interchange drive term is added

to Eq. (8b). For this system, the potential vorticity is u = ω − p and p is the pressure.

Proceeding as in Section 3, the momentum balance relation is (for Prandtl number of

unity):

∂

∂t

{

〈ũ2〉

〈u〉′
+ 〈vθ〉

}

= 〈ṽrp̃〉 −
1

〈u〉′

[

D0〈(∇ũ)2〉 +
∂

∂r
〈ṽrũ

2〉

]

− ν〈vθ〉

−
κ

〈u〉′
〈(∇2ṽr)p̃〉 −

α

〈u〉′
〈ũ∇2

‖φ〉. (18)

Here α is a dissipation coefficient. From comparison to Eqn. (11), we see that only the

last two terms in Eqn. (18) are new. The first is a curvature-dependent correction to

the driving flux, of O(ǫk2
⊥ρ2) with respect to 〈ṽrp̃〉. The second accounts for potential

enstrophy damping by resistively modified field line bending (i.e. α ∼ 1/η). Neither

substantively alters the messages of the momentum theorem given in Eqn. (11). In

particular, while curvature allows a fluctuation-induced torque which breaks local PV
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conservation, its impact on zonal momentum balance is seen to be quite modest. As

before, −〈ũ2〉/〈u〉′ emerges as the turbulence pseudomomentum, despite the absence

of anything remotely akin to oscillating waves in this application. A discussion of the

further extension of this approach to gyrokinetics is beyond the scope of this short paper.

We mention in passing, however, that preliminary results indicate such an extension is

eminently viable, with the only complications resulting from geodesic sideband couplings

to the zonal flow.

More generally, one certainly may ask “What does one gain from all this?”, to

which we answer:

i.) a momentum balance theorem for zonal flows, which complements existing work on

wave-mean flow interaction[13],

ii.) an unambiguous derivation of the pseudomomentum or turbulence momentum

density,

iii.) an awareness of the impact of dissipation profiles on determining zonal flow

structure,

iv.) an appreciation of the impact of particle transport and turbulence spreading (in

particular, potential enstrophy in/out flow) on flow evolution and poloidal spin-up.

In particular, a strong link between episodic particle transport events and zonal

flow generation is demonstrated. This prediction is easily testable by simulations,

v.) a direct relation between flow momentum evolution and the driving transport flux,

which is expressed in terms of macroscopic quantities (such as the driving flux),

and is insensitive to details of linear instability, etc. This exact relation may be

used in verification of simulations and for the determination of ITB thresholds,

vi.) an approach to understanding zonal flow dynamics in terms of macroscopics and

spatial transport, instead of spectral transfer,

vii.) the identification of a new mechanism for saturation of zonal flows in a collisionless

plasma.

Many applications of this approach are possible, and will be discussed in future

publications.
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